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Abstract
We propose factorized difference operators L(u) associated with the twisted
quantum affine algebras Uq

(
A
(2)
2n

)
, Uq

(
A
(2)
2n−1

)
, Uq

(
D
(2)
n+1

)
, Uq

(
D
(3)
4

)
. These

operators are shown to be annihilated by a screening operator. Based on
the solutions of the difference equation L(u)w(u) = 0, we also construct a
Casorati determinant solution to the T-system for Uq

(
A
(2)
2n

)
, Uq

(
A
(2)
2n−1

)
.

PACS numbers: 05.50.+q, 02.10.−v

1. Introduction

In [1], a class of functional relations, a T-system, was proposed for commuting transfer
matrices of solvable lattice models associated with twisted quantum affine algebras Uq

(
X
(r)
N

)
(r > 1). For X(r)

N = A(2)
N , it has the following form.

For the Uq
(
A
(2)
2n

)
case:

T (a)
m (u− 1)T (a)

m (u + 1) = T (a)

m−1(u)T
(a)

m+1(u) + T (a−1)
m (u)T (a+1)

m (u) for 1 � a � n− 1
(1.1)

T (n)
m (u− 1)T (n)

m (u + 1) = T (n)
m−1(u)T

(n)
m+1(u) + T (n−1)

m (u)T (n)
m

(
u +

π i

2h̄

)
.

For the Uq
(
A
(2)
2n−1

)
case:

T (a)
m (u− 1)T (a)

m (u + 1) = T (a)
m−1(u)T

(a)
m+1(u) + T (a−1)

m (u)T (a+1)
m (u) for 1 � a � n− 1

(1.2)

T (n)
m (u− 1)T (n)

m (u + 1) = T (n)
m−1(u)T

(n)
m+1(u) + T (n−1)

m (u)T (n−1)
m

(
u +

π i

2h̄

)
.

Here
{
T (a)
m (u)

}
a∈Iσ ;m∈Z�1;u∈C (Iσ = {1, 2, . . . , n}) are the transfer matrices with the auxiliary

space labelled by a and m. We shall adopt the boundary condition T (a)
−1 (u) = 0, T (a)

0 (u) = 1,
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which is natural for the transfer matrices. This T-system (1.1), (1.2) is a kind of discrete Toda
equation, which follows from a reduction of the Hirota–Miwa equation [2, 3]. The original
T-system [1] contains a scalar function g(a)m (u) in the second term of the rhs of (1.1), (1.2).
Throughout this paper, we set g(a)m (u) = 1. This corresponds to the case where the vacuum
part is formally trivial. However, the structure of the solution of (1.1), (1.2) is essentially
independent of the function g(a)m (u). In this paper, we briefly report on a new expression for
the solution of (1.1), (1.2) motivated by the recently found interplay [4] between factorized
difference L operators and the q-characters for non-twisted quantum affine algebras [5, 6].

In section 2, we propose factorized difference operators L(u) for Uq
(
A
(2)
2n

)
, Uq

(
A
(2)
2n−1

)
,

Uq
(
D
(2)
n+1

)
, Uq

(
D
(3)
4

)
. L(u) generates functions {T a(u)}a∈Z;u∈C, which are Laurent

polynomials in variables {Ya(u)}a∈Iσ ;u∈C. Moreover Ya(u) is expressed by a function
Qa(u) which corresponds to the Baxter Q-function. When Qa(u) is suitably chosen in
the context of the analytic Bethe ansatz [1, 7–9], T a(u) corresponds to an eigenvalue
formula of the transfer matrix in the dressed vacuum form (DVF). In particular for
1 � a � b

(
Uq

(
A
(2)
2n

)
, Uq

(
A
(2)
2n−1

)
: b = n; Uq

(
D
(2)
n+1

)
: b = n − 1; Uq

(
D
(3)
4

)
: b = 2

)
, the

auxiliary space for this transfer matrix is expected [1] to be a finite-dimensional irreducible
module of the quantum affine algebra [10, 11], which is called the Kirillov–Reshetikhin
module W(a)

1 (u) (see also section 5 in [12]). One of the intriguing properties of L(u) is that
L(u) is annihilated by a screening operator {Sa}a∈Iσ , from which

(
Sa · T a

)
(u) = 0 results. In

the context of the analytic Bethe ansatz, this corresponds to the pole-freeness of T a(u) under
the Bethe ansatz equation. For the non-twisted case Uq

(
X
(1)
N

)
, one may identify Sa with the

Frenkel–Reshetikhin screening operator [5] if Qa(u) is suitably chosen.
For theUq

(
A
(2)
N

)
case,L(u) becomes of the order ofN+1. By using a basis of the solutions

of the difference equation L(u)w(u) = 0, in section 3, we give a solution (theorem 3.6) of the
T-system for Uq

(
A
(2)
N

)
(1.1), (1.2) as a ratio of two Casorati determinants whose matrix size is

constantly (N + 1)× (N + 1). On solving this T-system, a duality relation (proposition 2.7)
plays an important role. There is another expression of the solution to the Uq

(
A
(2)
N

)
T-system (1.1), (1.2) which is described by semi-standard tableaux with rectangular shape
[1]. This solution follows from a reduction of the Bazhanov and Reshetikhin’s Jacobi–Trudi
type formula [13] (see (3.4)). In contrast to the Casorati determinants case, the size of the
matrix for this determinant is m×m and thus increases as m increases. Lemma 3.3 connects
these two types of solutions.

In contrast to theUq
(
A
(2)
N

)
case,L(u) forUq

(
D
(2)
n+1

)
, Uq

(
D
(3)
4

)
contain factors which have a

negative exponent−1, thus their order become infinite. Therefore we cannot straightforwardly
extend the analysis to get the Casorati determinant type solution for Uq

(
A
(2)
N

)
in this case.

However Jacobi–Trudi type formulae are still available in this case as reductions of the
solutions in [14, 15]. This situation is parallel to the non-twisted Uq

(
D(1)
n

)
case [4].

The deformation parameter q is expressed by a parameter h̄ as q = eh̄. The parameter h̄
often appears as a multiple of π i

rh̄
. However, we note that our argument in this paper is also

valid even if one formally sets π i
rh̄
= 0. In this case, the T-system (1.1) is equivalent to the

one for the superalgebra B(1)(0|n) [16].
In this paper, we omit most of the calculations and proofs, which are parallel with those

in the non-twisted case [4].

2. Difference L operators

Let XN be a complex simple Lie algebra of rank N, σ a Dynkin diagram automorphism of
XN of order r = 1, 2, 3. The affine Lie algebras of type X(r)

N = A(1)
n (n � 1), B(1)

n (n � 2),
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X
(r)
N XN automorphism σ

A
(2)
2n

❢ ❢ ❢ ❢ ❢ ❢

1 2 n n+1 2n−1 2n
σ (2n− a + 1) = a for 1 � a � 2n

A
(2)
2n−1

❢ ❢ ✈ ❢ ❢

1 2 n 2n−2 2n−1
σ(2n− a) = a for 1 � a � 2n− 1

D
(2)
n+1

✈ ✈ ✈ ❢

❢

1 2 n−1 n+1

n

σ (a) = a for 1 � a � n− 1;
σ(n) = n + 1; σ(n + 1) = n

E
(2)
6

❢ ❢ ✈ ❢ ❢

✈

1 2 3 5 6

4

σ(7− a) = a for a = 1, 2, 5, 6;
σ(3) = 3; σ(4) = 4

D
(3)
4

❢ ✈ ❢

❢

1 2 4

3

σ(1) = 3; σ(2) = 2;
σ(3) = 4; σ(4) = 1

Figure 1. The Dynkin diagrams of XN for r > 1: The enumeration of the nodes with I specified
under or on the right side of the nodes. The filled circles denote the fixed points of the Dynkin
diagram automorphism σ of order r .

C(1)
n (n � 2), D(1)

n (n � 4), E(1)
n (n = 6, 7, 8), F (1)

4 ,G
(1)
2 , A(2)

2n (n � 1), A(2)
2n−1 (n � 2),

D
(2)
n+1 (n � 2),E(2)

6 andD(3)
4 are realized as the canonical central extension of the loop algebras

based on the pair (XN, σ). We write the set of the nodes of the Dynkin diagram of XN as
I = {1, 2, . . . , N}, and let Iσ = {1, 2, . . . , n} be the set of σ -orbits of I. In particular, N = n

and I = Iσ for the non-twisted case r = 1. We define numbers {ra}a∈I such that ra = r

if σ(a) = a, otherwise ra = 1. In our enumeration of the notes of the Dynkin diagram
(see figure 1), ra is 1 except for the case: rn = 2 for A(2)

2n−1, ra = 2 (1 � a � n− 1) for D(2)
n+1,

r3 = r4 = 2 for E(2)
6 , r2 = 3 for D(3)

4 . Let {αa}a∈I be the simple roots of XN with a bilinear
form (·|·) normalized as (α|α) = 2 for a long root α. Let Iab be an element of the incidence
matrix of XN : Iab = 2δab − 2(αa|αb)/(αa|αa).

Let Uq
(
X
(r)

N

)
be the quantum affine algebra. We introduce functions {Qa(u)}a∈Iσ ;u∈C

which correspond to the Baxter Q functions for Uq
(
X
(r)

N

)
, and define functions

{Ya(u)}a∈Iσ ;u∈C as

Ya(u) =
Qa

(
u− 1

2 (αa |αa)
)

Qa

(
u + 1

2 (αa|αa)
) . (2.1)

We formally set Y0(u) = 1;Qn+1(u) = Qn

(
u+ π i

2h̄

)
and Yn+1(u) = Yn

(
u+ π i

2h̄

)
forX(r)

N = A(2)
2n ;

Qn+1(u) = 1 and Yn+1(u) = 1 for X(r)

N 
= A(2)
2n . For the twisted case r > 1, we assume quasi-

periodicity Qa

(
u + π i

h̄

) = haQa(u) (ha ∈ C), which induces periodicity Ya
(
u + π i

h̄

) = Ya(u).
For the non-twisted case r = 1, one can identify Ya(u) with the Frenkel–Reshetikhin variable
Ya,qu [5] denoted as Ya(u) in [4] if Qa(u) is suitably chosen. We shall also use notations
Qk
a(u) =

∏k−1
j=0 Qa

(
u + π ij

rh̄

)
and Y ka (u) =

∏k−1
j=0 Ya

(
u + π ij

rh̄

)
.
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Next we introduce screening operators {Sa}a∈Iσ on Z
[
Ya(u)

±1
]
a∈Iσ ;u∈C, whose action is

given by

(Sa · Yb)(u) = δabYa(u)Sa(u). (2.2)

Here we assume Sa(u) satisfies the following relation:

Sa(u + (αa|αa)) = Aa

(
u + 1

2 (αa|αa)
)
Sa(u) (2.3)

Aa(u) =
n′∏
b=1

Q
rab
b (u− (αa|αb))

Q
rab
b (u + (αa|αb)) (2.4)

where rab = max(ra, rb); n′ = n + 1 for X(r)
N = A

(2)
2n and n′ = n for X(r)

N 
= A
(2)
2n . We assume

Sa obeys the Leibniz rule. The origin of (2.4) goes back to the Reshetikhin and Wiegmann’s
Bethe ansatz equation [17] (cf (4.1)). For the non-twisted r = 1 case, (2.4) reduces to the
corresponding equation in [4]. We have a formal solution of (2.3) (see also section 5 in [5]):

Sa(u) =
∏n′

b=1 Kab(u)

Q
ra
a

(
u− 1

2 (αa|αa)
)
Q
ra
a

(
u + 1

2 (αa|αa)
) (2.5)

where

Kab(u) =




1 if Iab = 0
Q
rab
b (u) if Iab = 1

Qb

(
u− 1

2

)
Qb

(
u + 1

2

)
if Iab = 2

Qb

(
u− 2

3

)
Qb(u)Qb

(
u + 2

3

)
if Iab = 3.

(2.6)

Owing to the Leibniz rule, we have

(
Sa · Y kb

)
(u) = δabY ka (u)

k−1∑
j=0

Sa

(
u +

π ij

rh̄

)
. (2.7)

We shall use the following variables for each algebra; the origin of these variables goes back
to the analytic Bethe ansatz calculation of DVF [1, 8, 9].

For the Uq
(
A
(2)
2n

)
case:

za(u) = Ya(u + a)

Ya−1(u + a + 1)
for 1 � a � n

z0(u) =
Yn

(
u + n + 1 + π i

2h̄

)
Yn(u + n + 2)

(2.8)

zā(u) =
Ya−1

(
u + 2n− a + 2 + π i

2h̄

)
Ya

(
u + 2n− a + 3 + π i

2h̄

) for 1 � a � n.

We also use the variables: xa(u) = za(u) and x2n−a+2(u) = zā(u) for 1 � a � n; xn+1(u) =
z0(u).

For the Uq
(
A
(2)
2n−1

)
case:

za(u) = Ya(u + a)

Ya−1(u + a + 1)
for 1 � a � n− 1

zn(u) = Y 2
n (u + n)

Yn−1(u + n + 1)

zn̄(u) =
Yn−1

(
u + n + 1 + π i

2h̄

)
Y 2
n (u + n + 2)

zā(u) =
Ya−1

(
u + 2n− a + 1 + π i

2h̄

)
Ya

(
u + 2n− a + 2 + π i

2h̄

) for 1 � a � n− 1.

(2.9)
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We also use the variables: xa(u) = za(u) and x2n−a+1(u) = zā(u) for 1 � a � n.
For the Uq

(
D
(2)
n+1

)
case:

za(u) = Y 2
a (u + a)

Y 2
a−1(u + a + 1)

for 1 � a � n

zn+1(u) =
Yn

(
u + n + π i

2h̄

)
Yn(u + n + 2)

(2.10)

zn+1(u) =
Yn(u + n)

Yn
(
u + n + 2 + π i

2h̄

)

zā(u) =
Y 2
a−1(u + 2n− a + 1)

Y 2
a (u + 2n− a + 2)

for 1 � a � n.

For the Uq
(
D
(3)
4

)
case:

z1(u) = Y1(u + 1)

z2(u) = Y 3
2 (u + 2)

Y1(u + 3)

z3(u) = Y 3
1 (u + 3)

Y1(u + 3)Y 3
2 (u + 4)

z4(u) =
Y1

(
u + 3− π i

3h̄

)
Y1

(
u + 5 + π i

3h̄

)

z4̄(u) =
Y1

(
u + 3 + π i

3h̄

)
Y1

(
u + 5− π i

3h̄

)

z3̄(u) =
Y1(u + 5)Y 3

2 (u + 4)

Y 3
1 (u + 5)

z2̄(u) =
Y1(u + 5)

Y 3
2 (u + 6)

z1̄(u) =
1

Y1(u + 7)
.

(2.11)

Let D be a difference operator such thatDf (u) = f (u + 2)D for any function f (u). We shall

use notation:
−−−→∏m

k=1gk = g1g2 · · · gm and
←−−−∏m

k=1gk = gmgm−1 · · · g1. By using the variables
(2.8)–(2.11), we introduce a factorized difference L operator for each algebra.

For the Uq
(
A
(2)
2n

)
case:

L(u) =
−→
n∏

a=1

(1− zā(u)D)(1− z0(u)D)

←−
n∏

a=1

(1− za(u)D)

=
←−
2n+1∏
a=1

(1− xa(u)D). (2.12)

For the Uq
(
A
(2)
2n−1

)
case:

L(u) =
−→
n∏

a=1

(1− zā(u)D)
←−
n∏

a=1

(1− za(u)D) =
←−
2n∏
a=1

(1− xa(u)D). (2.13)
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For the Uq
(
D
(2)
n+1

)
case:

L(u) =
−→
n+1∏
a=1

(1− zā(u)D)
(
1− zn+1(u)zn+1(u + 2)D2

)−1

←−
n+1∏
a=1

(1− za(u)D). (2.14)

For the Uq
(
D
(3)
4

)
case:

L(u) =
−→

4∏
a=1

(1− zā(u)D)
(
1− z4(u)z4̄(u + 2)D2

)−1

←−
4∏

a=1

(1− za(u)D). (2.15)

In general, L(u) (2.12)–(2.15) are power series of D whose coefficients lie in
Z
[
Ya(u)

±1
]
a∈Iσ ;u∈C. We assume Sa acts on these coefficients linearly.

Proposition 2.1. For a ∈ Iσ , we have (Sa · L)(u) = 0.

The proof is similar to the non-twisted case [4]. So we just mention the lemmas which
are necessary to the Uq

(
D
(3)
4

)
case.

Lemma 2.2. For the Uq
(
D
(3)
4

)
case, let

H1(u) = Y1(u) +
Y 3

2 (u + 1)

Y1(u + 2)
H2(u) = Y 3

2 (u) +
Y 3

1 (u + 1)

Y 3
2 (u + 2)

K1(u) = 1

Y1(u)
+
Y1(u− 2)

Y 3
2 (u− 1)

K2(u) = 1

Y 3
2 (u)

+
Y 3

2 (u− 2)

Y 3
1 (u− 1)

then (Sa ·Ha)(u) = (Sa ·Ka)(u) = 0 for a = 1, 2.

Lemma 2.3. For the Uq
(
D
(3)
4

)
case, one can rewrite L(u) (2.15) as follows:

L(u) =
(

1−K1(u + 7)D +
1

Y 3
2 (u + 8)

D2

) 
1−

∞∑
j=0

Aj(u)D
2j+1 +

∞∑
j=0

Bj (u)D
2j+2




× (
1−H1(u + 1)D + Y 3

2 (u + 2)D2)
where

Aj(u) = K1

(
u + 4j + 5 +

π i

3h̄

)
H1

(
u + 3− π i

3h̄

)

+ (1− δj0)K1

(
u + 4j + 5− π i

3h̄

)
H1

(
u + 3 +

π i

3h̄

)

Bj (u) = K1

(
u + 4j + 7 +

π i

3h̄

)
H1

(
u + 3 +

π i

3h̄

)

+K1

(
u + 4j + 7− π i

3h̄

)
H1

(
u + 3− π i

3h̄

)
− δj0

Y 3
2 (u + 4)

Y 3
2 (u + 6)

.
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Lemma 2.4. For the Uq
(
D
(3)
4

)
case, one can expand the Y2 dependent part in L(u) (2.15):

(1− z2̄(u)D)(1− z3̄(u)D) = 1− Y1(u + 5)K2(u + 6)D +
Y1(u + 5)Y1(u + 7)

Y 3
1 (u + 7)

D2

(1− z3(u)D)(1− z2(u)D) = 1− H2(u + 2)

Y1(u + 3)
D +

Y 3
1 (u + 3)

Y1(u + 3)Y1(u + 5)
D2.

We shall expand L(u) as

L(u) =
∞∑
a=0

(−1)aT a(u + a)Da. (2.16)

In particular, we have T 0(u) = 1 and T a(u) = 0 for a ∈ Z<0. For the Uq
(
A
(2)
N

)
case, (2.16)

becomes a polynomial in D of order N + 1 and T a(u) = 0 for a ∈ Z�N+2.

Remark 2.5. There is a homomorphism β analogous to that in [5]:

β : Z
[
Ya(u)

±1
]
a∈Iσ ;u∈C→ Z

[
e±

1
ra
/a

]
a∈Iσ

β
(
Ya(u)

±1
) = e±

1
ra
/a

where {/a}a∈Iσ are the fundamental weights of a rank n subalgebra g
◦

of X(r)

N :
(
X
(r)

N , g
◦) =(

X(1)
n ,Xn

)
,
(
A
(2)
2n , Cn

)
,
(
A
(2)
2n−1, Cn

)
,
(
D
(2)
n+1, Bn

)
,
(
D
(3)
4 ,G2

)
,
(
E
(2)
6 , F4

)
. Note that the image

of β is independent of the parameter h̄. In particular, β(T a(u)) ∈ Z[e±/b ]b∈Iσ is a linear
combination of g

◦
characters (cf section 6 in [18]). For 1 � a � b

(
Uq

(
A
(2)
2n

)
, Uq

(
A
(2)
2n−1

)
:

b = n; Uq
(
D
(2)
n+1

)
: b = n − 1; Uq

(
D
(3)
4

)
: b = 2

)
, T a(u) contains a term Y raa (u) =∏a

k=1 zk(u + a − 2k): β
(
Y raa (u)

) = e/a . In the context of the analytic Bethe ansatz [9]
(resp. the theory of q-characters [5]), Y raa (u) corresponds to the top term of DVF (resp. the
highest weight monomial of the q-character) for the Kirillov–Reshetikhin module W(a)

1 (u)

over Uq
(
X
(r)
N

)
.

From proposition 2.1, we obtain:

Corollary 2.6. For a ∈ Iσ and b ∈ Z, we have
(
Sa · T b

)
(u) = 0.

For the Uq
(
A
(2)
N

)
case, there is a duality among {T a(u)}a∈Z;u∈C.

Proposition 2.7. For the Uq
(
A
(2)
N

)
case, we have

T a(u) = T N+1−a
(
u +

π i

2h̄

)
a ∈ Z.

This relation is given in [1] as ‘modulo σ relation’. The proof of this proposition is similar
to the B(1)(0|n) case [16], which corresponds to N = 2n and π i

h̄
→ 0.

One can show

L(u)Q
r1
1 (u) = 0. (2.17)

A T–Q relation follows from (2.17):
∞∑
a=0

(−1)aT a(u + a)Qr1
1 (u + 2a) = 0. (2.18)

We shall expand L(u)−1 as

L(u)−1 =
∞∑
m=0

Tm(u +m)Dm. (2.19)
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In particular, we have T0(u) = 1 and Tm(u) = 0 for m ∈ Z<0. From the relation
L(u)L(u)−1 = 1, we obtain a T–T relation

m∑
a=0

(−1)aTm−a(u +m + a)T a(u + a) = δm0. (2.20)

From the relation L(u)−1L(u) = 1, we also have
m∑
a=0

(−1)aTm−a(u−m− a)T a(u− a) = δm0. (2.21)

In particular for the Uq
(
A
(2)
N

)
case, the T–Q relation (2.18) reduces to

N+1∑
a=0

(−1)aT a(u + a)Q1(u + 2a) = 0. (2.22)

From the proposition 2.7, one can rewrite this as follows:
N+1∑
a=0

(−1)aT a(u− a)Q1

(
u− 2a + g +

π i

2h̄

)
= 0 (2.23)

where g = N + 1 is the dual Coxeter number ofA(2)
N . If one assumes limm→∞ Tm(u+m) (resp.

limm→∞ Tm(u−m)) is proportional to Q1(u) (resp.Q1(u + g + π i
2h̄ )), then one can recover the

T–Q relation (2.22) (resp. (2.23)) from the T–T relation (2.20) (resp. (2.21)).

3. Solution of the T-system

The goal of this section is to give a Casorati determinant solution to the Uq
(
A
(2)
N

)
T-system

(1.1), (1.2). Consider the following difference equation:

L(u)w(u) = 0 (3.1)

where L(u) is the difference L operator (2.12) and (2.13) for Uq
(
A
(2)
N

)
. By using a basis

{w1(u),w2(u), . . . , wN+1(u)} of the solutions of (3.1), we define a Casorati determinant:

[i1, i2, . . . , iN+1] =

∣∣∣∣∣∣∣∣∣

w1(u + 2i1) w1(u + 2i2) · · · w1(u + 2iN+1)

w2(u + 2i1) w2(u + 2i2) · · · w2(u + 2iN+1)

...
...

. . .
...

wN+1(u + 2i1) wN+1(u + 2i2) · · · wN+1(u + 2iN+1)

∣∣∣∣∣∣∣∣∣
.

Setting w = w1, w2, . . . , wN+1 in (3.1) and noting the relation T N+1(u) = 1, we obtain the
following relation:

[0, 1, . . . , N] = [1, 2, . . . , N + 1]. (3.2)

Owing to Cramer’s formula, we also have:

Proposition 3.1. For a ∈ {0, 1, . . . , N + 1}, we have

T a(u + a) = [0, 1, . . . , a − 1, a + 1, . . . , N + 1]

[0, 1, . . . , N]
.

Lemma 3.2. For the Uq
(
A
(2)
N

)
case, one can rewrite L(u) (2.12), (2.13) as

L(u) =
−→
N+1∏
a=1

(
xa

(
u +N + 1− 2a +

π i

2h̄

)
−D

)
.
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Let ξ (a)m (u) = [0, 1, . . . , a − 1, a + m, a + m + 1, . . . , N + m] and ξ(u) = ξ
(1)
0 (u) =

[0, 1, . . . , N]. Note that ξ (0)m (u) = ξ(u) follows from (3.2). For 1 � a � N + 1, we introduce
a difference operator

La(u) =
−−−−→

N+1∏
b=N+2−a

(
D − xb

(
u +N + 1− 2b +

π i

2h̄

))
. (3.3)

In particular we have LN+1(u) = (−1)N+1L(u). We choose a basis of the solutions of (3.1)
so that it satisfies La(u)wb(u) = 0 for 1 � b � a � N + 1: wa ∈ KerLa . For this basis, the
following lemma holds.

Lemma 3.3. Let {ik} be integers such that 0 = i0 < i1 < · · · < iN,µ = (µk) the Young
diagram whose kth row is µk = iN+1−k + k − N − 1, and µ′ = (µ′k) the transposition of µ.
We assign coordinates (j, k) ∈ Z

2 on the skew-Young diagram
(
µN+1

1

)/
µ such that the row

index j increases as we go upwards and the column index k increases as we go from left to
right and that (1, 1) is on the bottom left corner of

(
µN+1

1

)/
µ:

[i0, i1, . . . , iN ]

[0, 1, . . . , N]
=

∑
b

∏
(j,k)∈(µN+1

1 )/µ

xb(j,k)(u + 2j + 2k − 4)

= det
1�j,k�µ1

(
T µ′j−j+k

(
u + N − 1 + j + k − µ′j +

π i

2h̄

))

where the summation is taken over the semi-standard tableau b on the skew-Young diagram(
µN+1

1

)/
µ as the set of elements b(j, k) ∈ {1, 2, . . . , N + 1} labelled by the coordinates (j, k)

mentioned above.

The proof is similar to the Uq
(
C(1)
n

)
case [4], where we use a theorem in [19] and

proposition 2.7. Note that lemma 3.3 reduces to proposition 3.1 if we set ib = b for
0 � b � a − 1 and ib = b + 1 for a � b � N . From proposition 2.7 and lemma 3.3,
one can show:

Lemma 3.4. For a ∈ {0, 1, . . . , N + 1}, we have

ξ (a)m (u)

ξ(u)
= ξ (N−a+1)

m

(
u + 2a −N − 1 + π i

2h̄

)
ξ
(
u + 2a −N − 1 + π i

2h̄

) .

The following relation is a kind of Hirota–Miwa equation [2, 3], which is a Plücker
relation and used in a similar context [4, 20–22].

Lemma 3.5. ξ (a)m (u)ξ (a)m (u + 2) = ξ (a)m−1(u)ξ
(a)
m+1(u + 2) + ξ (a−1)

m (u)ξ (a+1)
m (u + 2).

From lemmas 3.4 and 3.5, we finally obtain:

Theorem 3.6. For a ∈ Iσ and m ∈ Z�1,

T (a)
m (u) = ξ (a)m (u− a −m + 1)

ξ(u− a −m + 1)

satisfies the T-system for Uq
(
A
(2)
N

)
(1.1), (1.2).

There is another expression of the solution to the Uq
(
A
(2)
N

)
T-system (1.1), (1.2), which

follows from a reduction of Bazhanov and Reshetikhin’s Jacobi–Trudi type formula [13]
(cf section 5 in [1])

T (a)
m (u) = det

1�j,k�m
(T a−j+k(u + j + k −m− 1)) (3.4)



4372 Z Tsuboi

where T a(u) obeys the following condition:

T a(u) =




0 if a < 0 or a > N + 1
1 if a = 0 or a = N + 1

T
(a)

1 (u) if 1 � a � n

T
(N−a+1)

1

(
u + π i

2h̄

)
if n + 1 � a � N.

(3.5)

Through the identification T a(u) = T a(u) and lemma 3.3, (3.4) reproduces the solution in
theorem 3.6, and also the tableaux sum expression in [1].

4. Discussion

In this paper, we have dealt with the T-system without the vacuum part. On applying our
results to realistic problems in solvable lattice models or integrable field theories, we must
specify the Baxter Q-function, and recover the vacuum part whose shape depends on each
model. We can easily recover the vacuum part multiplying the vacuum function ψa(u) by
the function za(u) so that ψa(u) is compatible with the Bethe ansatz equation of the form
(cf [17, 23])

4a

(
u
(a)

j

)
=

n′∏
b=1

Q
rab
b

(
u
(a)
j + (αa|αb)

)

Q
rab
b

(
u
(a)

j − (αa|αb)
) a ∈ Iσ . (4.1)

In the case of the solvable vertex model, it was conjectured [23] that 4a(u) is given as a ratio
of Drinfeld polynomials.

A remarkable connection between DVF and the q-character was pointed out in [5]. It
was also conjectured [4] that q-characters of Kirillov–Reshetikhin modules over Uq

(
X(1)
n

)
satisfy the T-system [24]. It is natural to expect that similar phenomena are also observed
for the twisted case Uq

(
X
(r)

N

)
(r > 1). Thus one may look upon T (a)

m (u) in theorem 3.6
(or T a(u)) as a kind of q-character. Precisely speaking, in view of a correspondence [25]
between DVF and generators of the deformed W -algebra, one may need to slightly modify
T (a)
m (u) (or T a(u)) (in particular, the factor π i

h̄
) to identify T (a)

m (u) (or T a(u)) with the

q-character of the Kirillov–Reshetikhin module over Uq
(
X
(r)

N

)
(r > 1).

We can also easily construct difference L operators associated with superalgebras by
using the results on the analytic Bethe ansatz [16, 26–28]. However, their orders are infinite
as Uq

(
B(1)
n

)
, Uq

(
D(1)
n

)
, Uq

(
D
(2)
n+1

)
, Uq

(
D
(3)
4

)
cases. Thus we will need some new ideas to

construct Casorati determinant-like solutions to the T-system for superalgebras.
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