Difference L operators and a Casorati determinant solution to the T-system for twisted quantum affine algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 354363
(http://iopscience.iop.org/0305-4470/35/19/316)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 02/06/2010 at 10:04

Please note that terms and conditions apply.

Difference L operators and a Casorati determinant solution to the \boldsymbol{T}-system for twisted quantum affine algebras

Zengo Tsuboi

Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8914, Japan
E-mail: ztsuboi@poisson.ms.u-tokyo.ac.jp

Received 30 January 2001
Published 3 May 2002
Online at stacks.iop.org/JPhysA/35/4363

Abstract

We propose factorized difference operators $L(u)$ associated with the twisted quantum affine algebras $U_{q}\left(A_{2 n}^{(2)}\right), U_{q}\left(A_{2 n-1}^{(2)}\right), U_{q}\left(D_{n+1}^{(2)}\right), U_{q}\left(D_{4}^{(3)}\right)$. These operators are shown to be annihilated by a screening operator. Based on the solutions of the difference equation $L(u) w(u)=0$, we also construct a Casorati determinant solution to the T-system for $U_{q}\left(A_{2 n}^{(2)}\right), U_{q}\left(A_{2 n-1}^{(2)}\right)$.

PACS numbers: 05.50.+q, 02.10.-v

1. Introduction

In [1], a class of functional relations, a T-system, was proposed for commuting transfer matrices of solvable lattice models associated with twisted quantum affine algebras $U_{q}\left(X_{N}^{(r)}\right)$ $(r>1)$. For $X_{N}^{(r)}=A_{N}^{(2)}$, it has the following form.

For the $U_{q}\left(A_{2 n}^{(2)}\right)$ case:
$T_{m}^{(a)}(u-1) T_{m}^{(a)}(u+1)=T_{m-1}^{(a)}(u) T_{m+1}^{(a)}(u)+T_{m}^{(a-1)}(u) T_{m}^{(a+1)}(u) \quad$ for $\quad 1 \leqslant a \leqslant n-1$
$T_{m}^{(n)}(u-1) T_{m}^{(n)}(u+1)=T_{m-1}^{(n)}(u) T_{m+1}^{(n)}(u)+T_{m}^{(n-1)}(u) T_{m}^{(n)}\left(u+\frac{\pi \mathrm{i}}{2 \hbar}\right)$.
For the $U_{q}\left(A_{2 n-1}^{(2)}\right)$ case:
$T_{m}^{(a)}(u-1) T_{m}^{(a)}(u+1)=T_{m-1}^{(a)}(u) T_{m+1}^{(a)}(u)+T_{m}^{(a-1)}(u) T_{m}^{(a+1)}(u) \quad$ for $\quad 1 \leqslant a \leqslant n-1$
$T_{m}^{(n)}(u-1) T_{m}^{(n)}(u+1)=T_{m-1}^{(n)}(u) T_{m+1}^{(n)}(u)+T_{m}^{(n-1)}(u) T_{m}^{(n-1)}\left(u+\frac{\pi \mathrm{i}}{2 \hbar}\right)$.
Here $\left\{T_{m}^{(a)}(u)\right\}_{a \in I_{\sigma} ; m \in \mathbb{Z} \geqslant 1 ; u \in \mathbb{C}}\left(I_{\sigma}=\{1,2, \ldots, n\}\right)$ are the transfer matrices with the auxiliary space labelled by a and m. We shall adopt the boundary condition $T_{-1}^{(a)}(u)=0, T_{0}^{(a)}(u)=1$,
which is natural for the transfer matrices. This T-system (1.1), (1.2) is a kind of discrete Toda equation, which follows from a reduction of the Hirota-Miwa equation [2, 3]. The original T-system [1] contains a scalar function $g_{m}^{(a)}(u)$ in the second term of the rhs of (1.1), (1.2). Throughout this paper, we set $g_{m}^{(a)}(u)=1$. This corresponds to the case where the vacuum part is formally trivial. However, the structure of the solution of (1.1), (1.2) is essentially independent of the function $g_{m}^{(a)}(u)$. In this paper, we briefly report on a new expression for the solution of (1.1), (1.2) motivated by the recently found interplay [4] between factorized difference L operators and the q-characters for non-twisted quantum affine algebras [5, 6].

In section 2, we propose factorized difference operators $L(u)$ for $U_{q}\left(A_{2 n}^{(2)}\right), U_{q}\left(A_{2 n-1}^{(2)}\right)$, $U_{q}\left(D_{n+1}^{(2)}\right), U_{q}\left(D_{4}^{(3)}\right) . L(u)$ generates functions $\left\{T^{a}(u)\right\}_{a \in \mathbb{Z} ; u \in \mathbb{C}}$, which are Laurent polynomials in variables $\left\{Y_{a}(u)\right\}_{a \in I_{\sigma} ; u \in \mathbb{C}}$. Moreover $Y_{a}(u)$ is expressed by a function $Q_{a}(u)$ which corresponds to the Baxter Q-function. When $Q_{a}(u)$ is suitably chosen in the context of the analytic Bethe ansatz [1, 7-9], $T^{a}(u)$ corresponds to an eigenvalue formula of the transfer matrix in the dressed vacuum form (DVF). In particular for $1 \leqslant a \leqslant b\left(U_{q}\left(A_{2 n}^{(2)}\right), U_{q}\left(A_{2 n-1}^{(2)}\right): b=n ; U_{q}\left(D_{n+1}^{(2)}\right): b=n-1 ; U_{q}\left(D_{4}^{(3)}\right): b=2\right)$, the auxiliary space for this transfer matrix is expected [1] to be a finite-dimensional irreducible module of the quantum affine algebra [10, 11], which is called the Kirillov-Reshetikhin module $W_{1}^{(a)}(u)$ (see also section 5 in [12]). One of the intriguing properties of $L(u)$ is that $L(u)$ is annihilated by a screening operator $\left\{\mathcal{S}_{a}\right\}_{a \in I_{\sigma}}$, from which $\left(\mathcal{S}_{a} \cdot T^{a}\right)(u)=0$ results. In the context of the analytic Bethe ansatz, this corresponds to the pole-freeness of $T^{a}(u)$ under the Bethe ansatz equation. For the non-twisted case $U_{q}\left(X_{N}^{(1)}\right)$, one may identify \mathcal{S}_{a} with the Frenkel-Reshetikhin screening operator [5] if $Q_{a}(u)$ is suitably chosen.

For the $U_{q}\left(A_{N}^{(2)}\right)$ case, $L(u)$ becomes of the order of $N+1$. By using a basis of the solutions of the difference equation $L(u) w(u)=0$, in section 3, we give a solution (theorem 3.6) of the T-system for $U_{q}\left(A_{N}^{(2)}\right)(1.1),(1.2)$ as a ratio of two Casorati determinants whose matrix size is constantly $(N+1) \times(N+1)$. On solving this T-system, a duality relation (proposition 2.7) plays an important role. There is another expression of the solution to the $U_{q}\left(A_{N}^{(2)}\right)$ T-system (1.1), (1.2) which is described by semi-standard tableaux with rectangular shape [1]. This solution follows from a reduction of the Bazhanov and Reshetikhin's Jacobi-Trudi type formula [13] (see (3.4)). In contrast to the Casorati determinants case, the size of the matrix for this determinant is $m \times m$ and thus increases as m increases. Lemma 3.3 connects these two types of solutions.

In contrast to the $U_{q}\left(A_{N}^{(2)}\right)$ case, $L(u)$ for $U_{q}\left(D_{n+1}^{(2)}\right), U_{q}\left(D_{4}^{(3)}\right)$ contain factors which have a negative exponent -1 , thus their order become infinite. Therefore we cannot straightforwardly extend the analysis to get the Casorati determinant type solution for $U_{q}\left(A_{N}^{(2)}\right)$ in this case. However Jacobi-Trudi type formulae are still available in this case as reductions of the solutions in [14, 15]. This situation is parallel to the non-twisted $U_{q}\left(D_{n}^{(1)}\right)$ case [4].

The deformation parameter q is expressed by a parameter \hbar as $q=\mathrm{e}^{\hbar}$. The parameter \hbar often appears as a multiple of $\frac{\pi \mathrm{i}}{r \hbar}$. However, we note that our argument in this paper is also valid even if one formally sets $\frac{\pi \mathrm{i}}{r \hbar}=0$. In this case, the T-system (1.1) is equivalent to the one for the superalgebra $B^{(1)}(0 \mid n)$ [16].

In this paper, we omit most of the calculations and proofs, which are parallel with those in the non-twisted case [4].

2. Difference L operators

Let X_{N} be a complex simple Lie algebra of rank N, σ a Dynkin diagram automorphism of X_{N} of order $r=1,2,3$. The affine Lie algebras of type $X_{N}^{(r)}=A_{n}^{(1)}(n \geqslant 1), B_{n}^{(1)}(n \geqslant 2)$,

$X_{N}^{(r)}$	X_{N}	automorphism σ
$A_{2 n}^{(2)}$		$\sigma(2 n-a+1)=a$ for $1 \leqslant a \leqslant 2 n$
$A_{2 n-1}^{(2)}$		$\sigma(2 n-a)=a$ for $1 \leqslant a \leqslant 2 n-1$
$D_{n+1}^{(2)}$		$\begin{aligned} & \sigma(a)=a \text { for } 1 \leqslant a \leqslant n-1 ; \\ & \sigma(n)=n+1 ; \quad \sigma(n+1)=n \end{aligned}$
$E_{6}^{(2)}$		$\begin{aligned} & \sigma(7-a)=a \text { for } a=1,2,5,6 \text {; } \\ & \sigma(3)=3 ; \quad \sigma(4)=4 \end{aligned}$
$D_{4}^{(3)}$		$\begin{array}{ll} \sigma(1)=3 ; & \sigma(2)=2 ; \\ \sigma(3)=4 ; & \sigma(4)=1 \end{array}$

Figure 1. The Dynkin diagrams of X_{N} for $r>1$: The enumeration of the nodes with I specified under or on the right side of the nodes. The filled circles denote the fixed points of the Dynkin diagram automorphism σ of order r.
$C_{n}^{(1)}(n \geqslant 2), D_{n}^{(1)}(n \geqslant 4), E_{n}^{(1)}(n=6,7,8), F_{4}^{(1)}, G_{2}^{(1)}, A_{2 n}^{(2)}(n \geqslant 1), A_{2 n-1}^{(2)}(n \geqslant 2)$, $D_{n+1}^{(2)}(n \geqslant 2), E_{6}^{(2)}$ and $D_{4}^{(3)}$ are realized as the canonical central extension of the loop algebras based on the pair $\left(X_{N}, \sigma\right)$. We write the set of the nodes of the Dynkin diagram of X_{N} as $I=\{1,2, \ldots, N\}$, and let $I_{\sigma}=\{1,2, \ldots, n\}$ be the set of σ-orbits of I. In particular, $N=n$ and $I=I_{\sigma}$ for the non-twisted case $r=1$. We define numbers $\left\{r_{a}\right\}_{a \in I}$ such that $r_{a}=r$ if $\sigma(a)=a$, otherwise $r_{a}=1$. In our enumeration of the notes of the Dynkin diagram (see figure 1), r_{a} is 1 except for the case: $r_{n}=2$ for $A_{2 n-1}^{(2)}, r_{a}=2(1 \leqslant a \leqslant n-1)$ for $D_{n+1}^{(2)}$, $r_{3}=r_{4}=2$ for $E_{6}^{(2)}, r_{2}=3$ for $D_{4}^{(3)}$. Let $\left\{\alpha_{a}\right\}_{a \in I}$ be the simple roots of X_{N} with a bilinear form $(\cdot \mid \cdot)$ normalized as $(\alpha \mid \alpha)=2$ for a long root α. Let $I_{a b}$ be an element of the incidence matrix of $X_{N}: I_{a b}=2 \delta_{a b}-2\left(\alpha_{a} \mid \alpha_{b}\right) /\left(\alpha_{a} \mid \alpha_{a}\right)$.

Let $U_{q}\left(X_{N}^{(r)}\right)$ be the quantum affine algebra. We introduce functions $\left\{Q_{a}(u)\right\}_{a \in I_{\sigma} ; u \in \mathbb{C}}$ which correspond to the Baxter Q functions for $U_{q}\left(X_{N}^{(r)}\right)$, and define functions $\left\{Y_{a}(u)\right\}_{a \in I_{\sigma} ; u \in \mathbb{C}}$ as

$$
\begin{equation*}
Y_{a}(u)=\frac{Q_{a}\left(u-\frac{1}{2}\left(\alpha_{a} \mid \alpha_{a}\right)\right)}{Q_{a}\left(u+\frac{1}{2}\left(\alpha_{a} \mid \alpha_{a}\right)\right)} . \tag{2.1}
\end{equation*}
$$

We formally set $Y_{0}(u)=1 ; Q_{n+1}(u)=Q_{n}\left(u+\frac{\pi \mathrm{i}}{2 \hbar}\right)$ and $Y_{n+1}(u)=Y_{n}\left(u+\frac{\pi \mathrm{i}}{2 \hbar}\right)$ for $X_{N}^{(r)}=A_{2 n}^{(2)}$; $Q_{n+1}(u)=1$ and $Y_{n+1}(u)=1$ for $X_{N}^{(r)} \neq A_{2 n}^{(2)}$. For the twisted case $r>1$, we assume quasiperiodicity $Q_{a}\left(u+\frac{\pi \mathrm{i}}{\hbar}\right)=h_{a} Q_{a}(u)\left(h_{a} \in \mathbb{C}\right)$, which induces periodicity $Y_{a}\left(u+\frac{\pi \mathrm{i}}{\hbar}\right)=Y_{a}(u)$. For the non-twisted case $r=1$, one can identify $Y_{a}(u)$ with the Frenkel-Reshetikhin variable $Y_{a, q^{u}}$ [5] denoted as $Y_{a}(u)$ in [4] if $Q_{a}(u)$ is suitably chosen. We shall also use notations $Q_{a}^{k}(u)=\prod_{j=0}^{k-1} Q_{a}\left(u+\frac{\pi \mathrm{i} j}{r \hbar}\right)$ and $Y_{a}^{k}(u)=\prod_{j=0}^{k-1} Y_{a}\left(u+\frac{\pi \mathrm{i} j}{r \hbar}\right)$.

Next we introduce screening operators $\left\{\mathcal{S}_{a}\right\}_{a \in I_{\sigma}}$ on $\mathbb{Z}\left[Y_{a}(u)^{ \pm 1}\right]_{a \in I_{\sigma} ; u \in \mathbb{C}}$, whose action is given by

$$
\left(\mathcal{S}_{a} \cdot Y_{b}\right)(u)=\delta_{a b} Y_{a}(u) S_{a}(u) .
$$

Here we assume $S_{a}(u)$ satisfies the following relation:

$$
\begin{align*}
& S_{a}\left(u+\left(\alpha_{a} \mid \alpha_{a}\right)\right)=A_{a}\left(u+\frac{1}{2}\left(\alpha_{a} \mid \alpha_{a}\right)\right) S_{a}(u) \tag{2.3}\\
& A_{a}(u)=\prod_{b=1}^{n^{\prime}} \frac{Q_{b b}^{r_{a b}}\left(u-\left(\alpha_{a} \mid \alpha_{b}\right)\right)}{Q_{b}^{r_{a b}}\left(u+\left(\alpha_{a} \mid \alpha_{b}\right)\right)} \tag{2.4}
\end{align*}
$$

where $r_{a b}=\max \left(r_{a}, r_{b}\right) ; n^{\prime}=n+1$ for $X_{N}^{(r)}=A_{2 n}^{(2)}$ and $n^{\prime}=n$ for $X_{N}^{(r)} \neq A_{2 n}^{(2)}$. We assume \mathcal{S}_{a} obeys the Leibniz rule. The origin of (2.4) goes back to the Reshetikhin and Wiegmann's Bethe ansatz equation [17] (cf (4.1)). For the non-twisted $r=1$ case, (2.4) reduces to the corresponding equation in [4]. We have a formal solution of (2.3) (see also section 5 in [5]):

$$
\begin{equation*}
S_{a}(u)=\frac{\prod_{b=1}^{n^{\prime}} K_{a b}(u)}{Q_{a}^{r_{a}}\left(u-\frac{1}{2}\left(\alpha_{a} \mid \alpha_{a}\right)\right) Q_{a}^{r_{a}}\left(u+\frac{1}{2}\left(\alpha_{a} \mid \alpha_{a}\right)\right)} \tag{2.5}
\end{equation*}
$$

where

$$
K_{a b}(u)=\left\{\begin{array}{lll}
1 & \text { if } \quad I_{a b}=0 \tag{2.6}\\
Q_{b}^{r_{a b}}(u) & \text { if } \quad I_{a b}=1 \\
Q_{b}\left(u-\frac{1}{2}\right) Q_{b}\left(u+\frac{1}{2}\right) & \text { if } \quad I_{a b}=2 \\
Q_{b}\left(u-\frac{2}{3}\right) Q_{b}(u) Q_{b}\left(u+\frac{2}{3}\right) & \text { if } \quad I_{a b}=3 .
\end{array}\right.
$$

Owing to the Leibniz rule, we have

$$
\begin{equation*}
\left(\mathcal{S}_{a} \cdot Y_{b}^{k}\right)(u)=\delta_{a b} Y_{a}^{k}(u) \sum_{j=0}^{k-1} S_{a}\left(u+\frac{\pi \mathrm{i} j}{r \hbar}\right) . \tag{2.7}
\end{equation*}
$$

We shall use the following variables for each algebra; the origin of these variables goes back to the analytic Bethe ansatz calculation of DVF $[1,8,9]$.

For the $U_{q}\left(A_{2 n}^{(2)}\right)$ case:

$$
\begin{align*}
& z_{a}(u)=\frac{Y_{a}(u+a)}{Y_{a-1}(u+a+1)} \quad \text { for } \quad 1 \leqslant a \leqslant n \\
& z_{0}(u)=\frac{Y_{n}\left(u+n+1+\frac{\pi \mathrm{i}}{2 \hbar}\right)}{Y_{n}(u+n+2)} \tag{2.8}\\
& z_{\bar{a}}(u)=\frac{Y_{a-1}\left(u+2 n-a+2+\frac{\pi \mathrm{i}}{2 \hbar}\right)}{Y_{a}\left(u+2 n-a+3+\frac{\pi \mathrm{i}}{2 \hbar}\right)} \quad \text { for } \quad 1 \leqslant a \leqslant n .
\end{align*}
$$

We also use the variables: $x_{a}(u)=z_{a}(u)$ and $x_{2 n-a+2}(u)=z_{\bar{a}}(u)$ for $1 \leqslant a \leqslant n ; x_{n+1}(u)=$ $z_{0}(u)$.

For the $U_{q}\left(A_{2 n-1}^{(2)}\right)$ case:

$$
\begin{align*}
& z_{a}(u)=\frac{Y_{a}(u+a)}{Y_{a-1}(u+a+1)} \quad \text { for } \quad 1 \leqslant a \leqslant n-1 \\
& z_{n}(u)=\frac{Y_{n}^{2}(u+n)}{Y_{n-1}(u+n+1)} \\
& z_{\bar{n}}(u)=\frac{Y_{n-1}\left(u+n+1+\frac{\pi \mathrm{i}}{2 \hbar}\right)}{Y_{n}^{2}(u+n+2)} \tag{2.9}\\
& z_{\bar{a}}(u)=\frac{Y_{a-1}\left(u+2 n-a+1+\frac{\pi \mathrm{i}}{2 \hbar}\right)}{Y_{a}\left(u+2 n-a+2+\frac{\pi \mathrm{i}}{2 \hbar}\right)} \quad \text { for } \quad 1 \leqslant a \leqslant n-1 .
\end{align*}
$$

We also use the variables: $x_{a}(u)=z_{a}(u)$ and $x_{2 n-a+1}(u)=z_{\bar{a}}(u)$ for $1 \leqslant a \leqslant n$.
For the $U_{q}\left(D_{n+1}^{(2)}\right)$ case:

$$
\begin{align*}
& z_{a}(u)=\frac{Y_{a}^{2}(u+a)}{Y_{a-1}^{2}(u+a+1)} \text { for } 1 \leqslant a \leqslant n \\
& z_{n+1}(u)=\frac{Y_{n}\left(u+n+\frac{\pi \mathrm{i}}{2 \hbar}\right)}{Y_{n}(u+n+2)} \tag{2.10}\\
& z_{\overline{n+1}}(u)=\frac{Y_{n}(u+n)}{Y_{n}\left(u+n+2+\frac{\pi \mathrm{i}}{2 \hbar}\right)} \\
& z_{\bar{u}(u)}=\frac{Y_{a-1}^{2}(u+2 n-a+1)}{Y_{a}^{2}(u+2 n-a+2)} \quad \text { for } 1 \leqslant a \leqslant n .
\end{align*}
$$

For the $U_{q}\left(D_{4}^{(3)}\right)$ case:

$$
\begin{align*}
& z_{1}(u)=Y_{1}(u+1) \\
& z_{2}(u)=\frac{Y_{2}^{3}(u+2)}{Y_{1}(u+3)} \\
& z_{3}(u)=\frac{Y_{1}^{3}(u+3)}{Y_{1}(u+3) Y_{2}^{3}(u+4)} \\
& z_{4}(u)=\frac{Y_{1}\left(u+3-\frac{\pi \mathrm{i}}{3 \hbar}\right)}{Y_{1}\left(u+5+\frac{\pi \mathrm{i}}{3 \hbar}\right)} \\
& z_{\overline{4}}(u)=\frac{Y_{1}\left(u+3+\frac{\pi \mathrm{i}}{3 \hbar}\right)}{Y_{1}\left(u+5-\frac{\pi \mathrm{i}}{3 \hbar}\right)} \tag{2.11}\\
& z_{\overline{3}}(u)=\frac{Y_{1}(u+5) Y_{2}^{3}(u+4)}{Y_{1}^{3}(u+5)} \\
& z_{2}(u)=\frac{Y_{1}(u+5)}{Y_{2}^{3}(u+6)} \\
& z_{\overline{1}}(u)=\frac{1}{Y_{1}(u+7) .}
\end{align*}
$$

Let D be a difference operator such that $D f(u)=f(u+2) D$ for any function $f(u)$. We shall use notation: $\prod_{k=1}^{m} g_{k}=g_{1} g_{2} \cdots g_{m}$ and $\prod_{k=1}^{m} g_{k}=g_{m} g_{m-1} \cdots g_{1}$. By using the variables (2.8)-(2.11), we introduce a factorized difference L operator for each algebra.

For the $U_{q}\left(A_{2 n}^{(2)}\right)$ case:

$$
\begin{align*}
L(u) & =\prod_{a=1}^{\vec{n}}\left(1-z_{\bar{a}}(u) D\right)\left(1-z_{0}(u) D\right) \prod_{a=1}^{\overleftarrow{n}}\left(1-z_{a}(u) D\right) \\
& =\prod_{a=1}^{\overleftarrow{2 n+1}}\left(1-x_{a}(u) D\right) \tag{2.12}
\end{align*}
$$

For the $U_{q}\left(A_{2 n-1}^{(2)}\right)$ case:

$$
\begin{equation*}
L(u)=\prod_{a=1}^{\vec{n}}\left(1-z_{\bar{a}}(u) D\right) \prod_{a=1}^{\overleftarrow{n}}\left(1-z_{a}(u) D\right)=\prod_{a=1}^{\overleftarrow{2 n}}\left(1-x_{a}(u) D\right) \tag{2.13}
\end{equation*}
$$

For the $U_{q}\left(D_{n+1}^{(2)}\right)$ case:
$L(u)=\prod_{a=1}^{\overrightarrow{n+1}}\left(1-z_{\bar{a}}(u) D\right)\left(1-z_{n+1}(u) z_{\overline{n+1}}(u+2) D^{2}\right)^{-1} \prod_{a=1}^{\overleftarrow{n+1}}\left(1-z_{a}(u) D\right)$.
For the $U_{q}\left(D_{4}^{(3)}\right)$ case:

$$
\begin{equation*}
L(u)=\prod_{a=1}^{\overrightarrow{4}}\left(1-z_{\bar{u}}(u) D\right)\left(1-z_{4}(u) z_{\overline{4}}(u+2) D^{2}\right)^{-1} \prod_{a=1}^{\overleftarrow{4}}\left(1-z_{a}(u) D\right) \tag{2.15}
\end{equation*}
$$

In general, $L(u)(2.12)-(2.15)$ are power series of D whose coefficients lie in $\mathbb{Z}\left[Y_{a}(u)^{ \pm 1}\right]$ \qquad We assume \mathcal{S}_{a} acts on these coefficients linearly.

Proposition 2.1. For $a \in I_{\sigma}$, we have $\left(\mathcal{S}_{a} \cdot L\right)(u)=0$.
The proof is similar to the non-twisted case [4]. So we just mention the lemmas which are necessary to the $U_{q}\left(D_{4}^{(3)}\right)$ case.

Lemma 2.2. For the $U_{q}\left(D_{4}^{(3)}\right)$ case, let

$$
\begin{array}{ll}
H_{1}(u)=Y_{1}(u)+\frac{Y_{2}^{3}(u+1)}{Y_{1}(u+2)} & H_{2}(u)=Y_{2}^{3}(u)+\frac{Y_{1}^{3}(u+1)}{Y_{2}^{3}(u+2)} \\
K_{1}(u)=\frac{1}{Y_{1}(u)}+\frac{Y_{1}(u-2)}{Y_{2}^{3}(u-1)} & K_{2}(u)=\frac{1}{Y_{2}^{3}(u)}+\frac{Y_{2}^{3}(u-2)}{Y_{1}^{3}(u-1)}
\end{array}
$$

then $\left(\mathcal{S}_{a} \cdot H_{a}\right)(u)=\left(\mathcal{S}_{a} \cdot K_{a}\right)(u)=0$ for $a=1,2$.

Lemma 2.3. For the $U_{q}\left(D_{4}^{(3)}\right)$ case, one can rewrite $L(u)$ (2.15) as follows:

$$
\begin{aligned}
& L(u)=(1-\left.K_{1}(u+7) D+\frac{1}{Y_{2}^{3}(u+8)} D^{2}\right)\left(1-\sum_{j=0}^{\infty} A_{j}(u) D^{2 j+1}+\sum_{j=0}^{\infty} B_{j}(u) D^{2 j+2}\right) \\
& \times\left(1-H_{1}(u+1) D+Y_{2}^{3}(u+2) D^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \begin{aligned}
A_{j}(u)=K_{1}(u & \left.+4 j+5+\frac{\pi \mathrm{i}}{3 \hbar}\right) H_{1}\left(u+3-\frac{\pi \mathrm{i}}{3 \hbar}\right) \\
& +\left(1-\delta_{j 0}\right) K_{1}\left(u+4 j+5-\frac{\pi \mathrm{i}}{3 \hbar}\right) H_{1}\left(u+3+\frac{\pi \mathrm{i}}{3 \hbar}\right) \\
B_{j}(u)=K_{1}(u & \left.+4 j+7+\frac{\pi \mathrm{i}}{3 \hbar}\right) H_{1}\left(u+3+\frac{\pi \mathrm{i}}{3 \hbar}\right) \\
& +K_{1}\left(u+4 j+7-\frac{\pi \mathrm{i}}{3 \hbar}\right) H_{1}\left(u+3-\frac{\pi \mathrm{i}}{3 \hbar}\right)-\delta_{j 0} \frac{Y_{2}^{3}(u+4)}{Y_{2}^{3}(u+6)} .
\end{aligned} .
\end{aligned}
$$

Lemma 2.4. For the $U_{q}\left(D_{4}^{(3)}\right)$ case, one can expand the Y_{2} dependent part in $L(u)$ (2.15):
$\left(1-z_{2}^{\overline{2}}(u) D\right)\left(1-z_{\overline{3}}(u) D\right)=1-Y_{1}(u+5) K_{2}(u+6) D+\frac{Y_{1}(u+5) Y_{1}(u+7)}{Y_{1}^{3}(u+7)} D^{2}$
$\left(1-z_{3}(u) D\right)\left(1-z_{2}(u) D\right)=1-\frac{H_{2}(u+2)}{Y_{1}(u+3)} D+\frac{Y_{1}^{3}(u+3)}{Y_{1}(u+3) Y_{1}(u+5)} D^{2}$.
We shall expand $L(u)$ as

$$
\begin{equation*}
L(u)=\sum_{a=0}^{\infty}(-1)^{a} T^{a}(u+a) D^{a} \tag{2.16}
\end{equation*}
$$

In particular, we have $T^{0}(u)=1$ and $T^{a}(u)=0$ for $a \in \mathbb{Z}_{<0}$. For the $U_{q}\left(A_{N}^{(2)}\right)$ case, (2.16) becomes a polynomial in D of order $N+1$ and $T^{a}(u)=0$ for $a \in \mathbb{Z}_{\geqslant N+2}$.

Remark 2.5. There is a homomorphism β analogous to that in [5]:

$$
\beta: \mathbb{Z}\left[Y_{a}(u)^{ \pm 1}\right]_{a \in I_{\sigma} ; u \in \mathbb{C}} \rightarrow \mathbb{Z}\left[\mathrm{e}^{ \pm \frac{1}{r_{a}} \Lambda_{a}}\right]_{a \in I_{\sigma}} \quad \beta\left(Y_{a}(u)^{ \pm 1}\right)=\mathrm{e}^{ \pm \frac{1}{r_{a}} \Lambda_{a}}
$$

where $\left\{\Lambda_{a}\right\}_{a \in I_{\sigma}}$ are the fundamental weights of a rank n subalgebra \mathfrak{g} of $X_{N}^{(r)}:\left(X_{N}^{(r)}, \mathfrak{g}\right)=$ $\left(X_{n}^{(1)}, X_{n}\right),\left(A_{2 n}^{(2)}, C_{n}\right),\left(A_{2 n-1}^{(2)}, C_{n}\right),\left(D_{n+1}^{(2)}, B_{n}\right),\left(D_{4}^{(3)}, G_{2}\right),\left(E_{6}^{(2)}, F_{4}\right)$. Note that the image of β is independent of the parameter \hbar. In particular, $\beta\left(T^{a}(u)\right) \in \mathbb{Z}\left[\mathrm{e}^{ \pm \Lambda_{b}}\right]_{b \in I_{\sigma}}$ is a linear combination of \mathfrak{g} characters (cf section 6 in [18]). For $1 \leqslant a \leqslant b\left(U_{q}\left(A_{2 n}^{(2)}\right), U_{q}\left(A_{2 n-1}^{(2)}\right)\right.$: $\left.b=n ; U_{q}\left(D_{n+1}^{(2)}\right): b=n-1 ; U_{q}\left(D_{4}^{(3)}\right): \quad b=2\right), T^{a}(u)$ contains a term $Y_{a}^{r_{a}}(u)=$ $\prod_{k=1}^{a} z_{k}(u+a-2 k): \beta\left(Y_{a}^{r_{a}}(u)\right)=\mathrm{e}^{\Lambda_{a}}$. In the context of the analytic Bethe ansatz [9] (resp. the theory of q-characters [5]), $Y_{a}^{r_{a}}(u)$ corresponds to the top term of DVF (resp. the highest weight monomial of the q-character) for the Kirillov-Reshetikhin module $W_{1}^{(a)}(u)$ over $U_{q}\left(X_{N}^{(r)}\right)$.

From proposition 2.1, we obtain:
Corollary 2.6. For $a \in I_{\sigma}$ and $b \in \mathbb{Z}$, we have $\left(\mathcal{S}_{a} \cdot T^{b}\right)(u)=0$.
For the $U_{q}\left(A_{N}^{(2)}\right)$ case, there is a duality among $\left\{T^{a}(u)\right\}_{a \in \mathbb{Z} ; u \in \mathbb{C}}$.
Proposition 2.7. For the $U_{q}\left(A_{N}^{(2)}\right)$ case, we have

$$
T^{a}(u)=T^{N+1-a}\left(u+\frac{\pi \mathrm{i}}{2 \hbar}\right) \quad a \in \mathbb{Z} .
$$

This relation is given in [1] as 'modulo σ relation'. The proof of this proposition is similar to the $B^{(1)}(0 \mid n)$ case [16], which corresponds to $N=2 n$ and $\frac{\pi i}{\hbar} \rightarrow 0$.

One can show

$$
\begin{equation*}
L(u) Q_{1}^{r_{1}}(u)=0 . \tag{2.17}
\end{equation*}
$$

A $T-Q$ relation follows from (2.17):

$$
\begin{equation*}
\sum_{a=0}^{\infty}(-1)^{a} T^{a}(u+a) Q_{1}^{r_{1}}(u+2 a)=0 \tag{2.18}
\end{equation*}
$$

We shall expand $L(u)^{-1}$ as

$$
\begin{equation*}
L(u)^{-1}=\sum_{m=0}^{\infty} T_{m}(u+m) D^{m} . \tag{2.19}
\end{equation*}
$$

In particular, we have $T_{0}(u)=1$ and $T_{m}(u)=0$ for $m \in \mathbb{Z}_{<0}$. From the relation $L(u) L(u)^{-1}=1$, we obtain a $T-T$ relation

$$
\begin{equation*}
\sum_{a=0}^{m}(-1)^{a} T_{m-a}(u+m+a) T^{a}(u+a)=\delta_{m 0} . \tag{2.20}
\end{equation*}
$$

From the relation $L(u)^{-1} L(u)=1$, we also have

$$
\begin{equation*}
\sum_{a=0}^{m}(-1)^{a} T_{m-a}(u-m-a) T^{a}(u-a)=\delta_{m 0} \tag{2.21}
\end{equation*}
$$

In particular for the $U_{q}\left(A_{N}^{(2)}\right)$ case, the $T-Q$ relation (2.18) reduces to

$$
\begin{equation*}
\sum_{a=0}^{N+1}(-1)^{a} T^{a}(u+a) Q_{1}(u+2 a)=0 . \tag{2.22}
\end{equation*}
$$

From the proposition 2.7, one can rewrite this as follows:

$$
\begin{equation*}
\sum_{a=0}^{N+1}(-1)^{a} T^{a}(u-a) Q_{1}\left(u-2 a+g+\frac{\pi \mathrm{i}}{2 \hbar}\right)=0 \tag{2.23}
\end{equation*}
$$

where $g=N+1$ is the dual Coxeter number of $A_{N}^{(2)}$. If one assumes $\lim _{m \rightarrow \infty} T_{m}(u+m)$ (resp. $\left.\lim _{m \rightarrow \infty} T_{m}(u-m)\right)$ is proportional to $Q_{1}(u)\left(\right.$ resp. $\left.Q_{1}\left(u+g+\frac{\pi \mathrm{i}}{2 \hbar}\right)\right)$, then one can recover the $T-Q$ relation (2.22) (resp. (2.23)) from the $T-T$ relation (2.20) (resp. (2.21)).

3. Solution of the T-system

The goal of this section is to give a Casorati determinant solution to the $U_{q}\left(A_{N}^{(2)}\right) T$-system (1.1), (1.2). Consider the following difference equation:

$$
\begin{equation*}
L(u) w(u)=0 \tag{3.1}
\end{equation*}
$$

where $L(u)$ is the difference L operator (2.12) and (2.13) for $U_{q}\left(A_{N}^{(2)}\right)$. By using a basis $\left\{w_{1}(u), w_{2}(u), \ldots, w_{N+1}(u)\right\}$ of the solutions of (3.1), we define a Casorati determinant:

$$
\left[i_{1}, i_{2}, \ldots, i_{N+1}\right]=\left|\begin{array}{cccc}
w_{1}\left(u+2 i_{1}\right) & w_{1}\left(u+2 i_{2}\right) & \cdots & w_{1}\left(u+2 i_{N+1}\right) \\
w_{2}\left(u+2 i_{1}\right) & w_{2}\left(u+2 i_{2}\right) & \cdots & w_{2}\left(u+2 i_{N+1}\right) \\
\vdots & \vdots & \ddots & \vdots \\
w_{N+1}\left(u+2 i_{1}\right) & w_{N+1}\left(u+2 i_{2}\right) & \cdots & w_{N+1}\left(u+2 i_{N+1}\right)
\end{array}\right|
$$

Setting $w=w_{1}, w_{2}, \ldots, w_{N+1}$ in (3.1) and noting the relation $T^{N+1}(u)=1$, we obtain the following relation:

$$
\begin{equation*}
[0,1, \ldots, N]=[1,2, \ldots, N+1] . \tag{3.2}
\end{equation*}
$$

Owing to Cramer's formula, we also have:
Proposition 3.1. For $a \in\{0,1, \ldots, N+1\}$, we have

$$
T^{a}(u+a)=\frac{[0,1, \ldots, a-1, a+1, \ldots, N+1]}{[0,1, \ldots, N]} .
$$

Lemma 3.2. For the $U_{q}\left(A_{N}^{(2)}\right)$ case, one can rewrite $L(u)$ (2.12), (2.13) as

$$
L(u)=\prod_{a=1}^{\overrightarrow{N+1}}\left(x_{a}\left(u+N+1-2 a+\frac{\pi \mathrm{i}}{2 \hbar}\right)-D\right) .
$$

Let $\xi_{m}^{(a)}(u)=[0,1, \ldots, a-1, a+m, a+m+1, \ldots, N+m]$ and $\xi(u)=\xi_{0}^{(1)}(u)=$ $[0,1, \ldots, N]$. Note that $\xi_{m}^{(0)}(u)=\xi(u)$ follows from (3.2). For $1 \leqslant a \leqslant N+1$, we introduce a difference operator

$$
\begin{equation*}
L_{a}(u)=\prod_{b=N+2-a}^{N+1}\left(D-x_{b}\left(u+N+1-2 b+\frac{\pi \mathrm{i}}{2 \hbar}\right)\right) . \tag{3.3}
\end{equation*}
$$

In particular we have $L_{N+1}(u)=(-1)^{N+1} L(u)$. We choose a basis of the solutions of (3.1) so that it satisfies $L_{a}(u) w_{b}(u)=0$ for $1 \leqslant b \leqslant a \leqslant N+1: w_{a} \in \operatorname{Ker} L_{a}$. For this basis, the following lemma holds.

Lemma 3.3. Let $\left\{i_{k}\right\}$ be integers such that $0=i_{0}<i_{1}<\cdots<i_{N}, \mu=\left(\mu_{k}\right)$ the Young diagram whose kth row is $\mu_{k}=i_{N+1-k}+k-N-1$, and $\mu^{\prime}=\left(\mu_{k}^{\prime}\right)$ the transposition of μ. We assign coordinates $(j, k) \in \mathbb{Z}^{2}$ on the skew-Young diagram $\left(\mu_{1}^{N+1}\right) / \mu$ such that the row index j increases as we go upwards and the column index k increases as we go from left to right and that $(1,1)$ is on the bottom left corner of $\left(\mu_{1}^{N+1}\right) / \mu$:

$$
\begin{aligned}
\frac{\left[i_{0}, i_{1}, \ldots, i_{N}\right]}{[0,1, \ldots, N]} & =\sum_{b} \prod_{(j, k) \in\left(\mu_{1}^{N+1}\right) / \mu} x_{b(j, k)}(u+2 j+2 k-4) \\
& =\operatorname{det}_{1 \leqslant j, k \leqslant \mu_{1}}\left(T^{\mu_{j}^{\prime}-j+k}\left(u+N-1+j+k-\mu_{j}^{\prime}+\frac{\pi \mathrm{i}}{2 \hbar}\right)\right)
\end{aligned}
$$

where the summation is taken over the semi-standard tableau b on the skew-Young diagram $\left(\mu_{1}^{N+1}\right) / \mu$ as the set of elements $b(j, k) \in\{1,2, \ldots, N+1\}$ labelled by the coordinates (j, k) mentioned above.

The proof is similar to the $U_{q}\left(C_{n}^{(1)}\right)$ case [4], where we use a theorem in [19] and proposition 2.7. Note that lemma 3.3 reduces to proposition 3.1 if we set $i_{b}=b$ for $0 \leqslant b \leqslant a-1$ and $i_{b}=b+1$ for $a \leqslant b \leqslant N$. From proposition 2.7 and lemma 3.3, one can show:

Lemma 3.4. For $a \in\{0,1, \ldots, N+1\}$, we have

$$
\frac{\xi_{m}^{(a)}(u)}{\xi(u)}=\frac{\xi_{m}^{(N-a+1)}\left(u+2 a-N-1+\frac{\pi \mathrm{i}}{2 \hbar}\right)}{\xi\left(u+2 a-N-1+\frac{\pi \mathrm{i}}{2 \hbar}\right)} .
$$

The following relation is a kind of Hirota-Miwa equation [2, 3], which is a Plücker relation and used in a similar context [4, 20-22].

Lemma 3.5. $\xi_{m}^{(a)}(u) \xi_{m}^{(a)}(u+2)=\xi_{m-1}^{(a)}(u) \xi_{m+1}^{(a)}(u+2)+\xi_{m}^{(a-1)}(u) \xi_{m}^{(a+1)}(u+2)$.
From lemmas 3.4 and 3.5, we finally obtain:
Theorem 3.6. For $a \in I_{\sigma}$ and $m \in \mathbb{Z}_{\geqslant 1}$,

$$
T_{m}^{(a)}(u)=\frac{\xi_{m}^{(a)}(u-a-m+1)}{\xi(u-a-m+1)}
$$

satisfies the T-system for $U_{q}\left(A_{N}^{(2)}\right)$ (1.1), (1.2).
There is another expression of the solution to the $U_{q}\left(A_{N}^{(2)}\right) T$-system (1.1), (1.2), which follows from a reduction of Bazhanov and Reshetikhin's Jacobi-Trudi type formula [13] (cf section 5 in [1])

$$
\begin{equation*}
T_{m}^{(a)}(u)=\operatorname{det}_{1 \leqslant j, k \leqslant m}\left(\mathcal{T}^{a-j+k}(u+j+k-m-1)\right) \tag{3.4}
\end{equation*}
$$

where $\mathcal{T}^{a}(u)$ obeys the following condition:

$$
\mathcal{T}^{a}(u)= \begin{cases}0 & \text { if } \quad a<0 \text { or } a>N+1 \tag{3.5}\\ 1 & \text { if } \quad a=0 \text { or } a=N+1 \\ T_{1}^{(a)}(u) & \text { if } 1 \leqslant a \leqslant n \\ T_{1}^{(N-a+1)}\left(u+\frac{\pi \mathrm{i}}{2 h}\right) & \text { if } n+1 \leqslant a \leqslant N .\end{cases}
$$

Through the identification $\mathcal{T}^{a}(u)=T^{a}(u)$ and lemma 3.3, (3.4) reproduces the solution in theorem 3.6, and also the tableaux sum expression in [1].

4. Discussion

In this paper, we have dealt with the T-system without the vacuum part. On applying our results to realistic problems in solvable lattice models or integrable field theories, we must specify the Baxter Q-function, and recover the vacuum part whose shape depends on each model. We can easily recover the vacuum part multiplying the vacuum function $\psi_{a}(u)$ by the function $z_{a}(u)$ so that $\psi_{a}(u)$ is compatible with the Bethe ansatz equation of the form (cf [17, 23])

$$
\begin{equation*}
\Psi_{a}\left(u_{j}^{(a)}\right)=\prod_{b=1}^{n^{\prime}} \frac{Q_{b}^{r_{a b}}\left(u_{j}^{(a)}+\left(\alpha_{a} \mid \alpha_{b}\right)\right)}{Q_{b}^{r_{a b}}\left(u_{j}^{(a)}-\left(\alpha_{a} \mid \alpha_{b}\right)\right)} \quad a \in I_{\sigma} . \tag{4.1}
\end{equation*}
$$

In the case of the solvable vertex model, it was conjectured [23] that $\Psi_{a}(u)$ is given as a ratio of Drinfeld polynomials.

A remarkable connection between DVF and the q-character was pointed out in [5]. It was also conjectured [4] that q-characters of Kirillov-Reshetikhin modules over $U_{q}\left(X_{n}^{(1)}\right)$ satisfy the T-system [24]. It is natural to expect that similar phenomena are also observed for the twisted case $U_{q}\left(X_{N}^{(r)}\right)(r>1)$. Thus one may look upon $T_{m}^{(a)}(u)$ in theorem 3.6 (or $T^{a}(u)$) as a kind of q-character. Precisely speaking, in view of a correspondence [25] between DVF and generators of the deformed W-algebra, one may need to slightly modify $T_{m}^{(a)}(u)$ (or $T^{a}(u)$) (in particular, the factor $\frac{\pi \mathrm{i}}{\hbar}$) to identify $T_{m}^{(a)}(u)$ (or $T^{a}(u)$) with the q-character of the Kirillov-Reshetikhin module over $U_{q}\left(X_{N}^{(r)}\right)(r>1)$.

We can also easily construct difference L operators associated with superalgebras by using the results on the analytic Bethe ansatz [16, 26-28]. However, their orders are infinite as $U_{q}\left(B_{n}^{(1)}\right), U_{q}\left(D_{n}^{(1)}\right), U_{q}\left(D_{n+1}^{(2)}\right), U_{q}\left(D_{4}^{(3)}\right)$ cases. Thus we will need some new ideas to construct Casorati determinant-like solutions to the T-system for superalgebras.

Acknowledgments

The author would like to thank Professor A Kuniba for explaining the results on [4]. He is financially supported by Inoue Foundation for Science.

References

[1] Kuniba A and Suzuki J 1995 J. Phys. A: Math. Gen. 28711
[2] Hirota R 1981 J. Phys. Soc. Japan 503785
[3] Miwa T 1982 Proc. Japan. Acad. 589
[4] Kuniba A, Okado M, Suzuki J and Yamada Y 2002 J. Phys. A: Math. Gen. 351415 (Preprint math.QA/0109140)
[5] Frenkel E and Reshetikhin N 1999 Contemp. Math. 248163
[6] Frenkel E and Mukhin E 2001 Commun. Math. Phys. 21623
[7] Reshetikhin N Yu 1983 Sov. Phys.-JETP 57691
[8] Reshetikhin N Yu 1987 Lett. Math. Phys. 14235
[9] Kuniba A and Suzuki J 1995 Commun. Math. Phys. 173225
[10] Chari V and Pressley A 1995 Can. Math. Soc. Conf. Proc. 1659
[11] Chari V and Pressley A 1998 Commun. Math. Phys. 196461
[12] Kuniba A, Nakanishi T and Tsuboi Z 2001 Preprint math.QA/0105145 (2002 Commun. Math. Phys. at press)
[13] Bazhanov V and Reshetikhin N 1990 J. Phys. A: Math. Gen. 231477
[14] Kuniba A, Nakamura S and Hirota R 1996 J. Phys. A: Math. Gen. 291759
[15] Tsuboi Z and Kuniba A 1996 J. Phys. A: Math. Gen. 297785
[16] Tsuboi Z 1999 J. Phys. A: Math. Gen. 327175
[17] Reshetikhin N Yu and Wiegmann P 1987 Phys. Lett. B 189125
[18] Hatayama G, Kuniba A, Okado M, Takagi T and Tsuboi Z 2001 Preprint math.QA/0102113 (2002 Progress in Mathematical Physics (Boston, MA: Birkhäuser) at press)
[19] Nakagawa J, Noumi M, Shirakawa M and Yamada Y 2000 Physics and Combinatorics, Proc. Nagoya 2000 Int. Workshop ed A N Kirillov and N Liskova (Singapore: World Scientific) p 180
[20] Krichever I, Lipan O, Wiegmann P and Zabrodin A 1997 Commun. Math. Phys. 188267
[21] Suzuki J 2001 RIMS Kokyuroku 122121 (nlin.SI/0009006)
[22] Dorey P, Dunning C and Tateo R 2000 J. Phys. A: Math. Gen. 338427
[23] Kuniba A, Ohta Y and Suzuki J 1995 J. Phys. A: Math. Gen. 286211
[24] Kuniba A, Nakanishi T and Suzuki J 1994 Int. J. Mod. Phys. A 95215
[25] Frenkel E and Reshetikhin N 1998 Commun. Math. Phys. 1971
[26] Tsuboi Z 1997 J. Phys. A: Math. Gen. 307875
[27] Tsuboi Z 1998 Physica A 252565
[28] Tsuboi Z 1999 Physica A 267173

