

Home

Search Collections Journals About Contact us My IOPscience

Difference *L* operators and a Casorati determinant solution to the *T*-system for twisted quantum affine algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 35 4363 (http://iopscience.iop.org/0305-4470/35/19/316) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.106 The article was downloaded on 02/06/2010 at 10:04

Please note that terms and conditions apply.

J. Phys. A: Math. Gen. 35 (2002) 4363-4373

PII: S0305-4470(02)33351-1

Difference L operators and a Casorati determinant solution to the T-system for twisted quantum affine algebras

Zengo Tsuboi

Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8914, Japan

E-mail: ztsuboi@poisson.ms.u-tokyo.ac.jp

Received 30 January 2001 Published 3 May 2002 Online at stacks.iop.org/JPhysA/35/4363

Abstract

We propose factorized difference operators L(u) associated with the twisted quantum affine algebras $U_q(A_{2n}^{(2)}), U_q(A_{2n-1}^{(2)}), U_q(D_{n+1}^{(2)}), U_q(D_4^{(3)})$. These operators are shown to be annihilated by a screening operator. Based on the solutions of the difference equation L(u)w(u) = 0, we also construct a Casorati determinant solution to the *T*-system for $U_q(A_{2n}^{(2)}), U_q(A_{2n-1}^{(2)})$.

PACS numbers: 05.50.+q, 02.10.-v

1. Introduction

In [1], a class of functional relations, a T-system, was proposed for commuting transfer matrices of solvable lattice models associated with twisted quantum affine algebras $U_q(X_N^{(r)})$ (r > 1). For $X_N^{(r)} = A_N^{(2)}$, it has the following form. For the $U_q(A_{2n}^{(2)})$ case:

$$T_m^{(a)}(u-1)T_m^{(a)}(u+1) = T_{m-1}^{(a)}(u)T_{m+1}^{(a)}(u) + T_m^{(a-1)}(u)T_m^{(a+1)}(u) \quad \text{for} \quad 1 \le a \le n-1$$

$$T_m^{(n)}(u-1)T_m^{(n)}(u+1) = T_{m-1}^{(n)}(u)T_{m+1}^{(n)}(u) + T_m^{(n-1)}(u)T_m^{(n)}\left(u + \frac{\pi i}{2\hbar}\right).$$

For the $U_q(A_{2n-1}^{(2)})$ case:

$$T_m^{(a)}(u-1)T_m^{(a)}(u+1) = T_{m-1}^{(a)}(u)T_{m+1}^{(a)}(u) + T_m^{(a-1)}(u)T_m^{(a+1)}(u) \quad \text{for} \quad 1 \le a \le n-1$$

$$T_m^{(n)}(u-1)T_m^{(n)}(u+1) = T_{m-1}^{(n)}(u)T_{m+1}^{(n)}(u) + T_m^{(n-1)}(u)T_m^{(n-1)}\left(u + \frac{\pi i}{2\hbar}\right).$$

Here $\{T_m^{(a)}(u)\}_{a \in I_\sigma; m \in \mathbb{Z}_{\geq 1}; u \in \mathbb{C}}$ $(I_\sigma = \{1, 2, ..., n\})$ are the transfer matrices with the auxiliary space labelled by *a* and *m*. We shall adopt the boundary condition $T_{-1}^{(a)}(u) = 0$, $T_{0}^{(a)}(u) = 1$, 0305-4470/02/194363+11\$30.00 © 2002 IOP Publishing Ltd Printed in the UK 4363

which is natural for the transfer matrices. This *T*-system (1.1), (1.2) is a kind of discrete Toda equation, which follows from a reduction of the Hirota–Miwa equation [2, 3]. The original *T*-system [1] contains a scalar function $g_m^{(a)}(u)$ in the second term of the rhs of (1.1), (1.2). Throughout this paper, we set $g_m^{(a)}(u) = 1$. This corresponds to the case where the vacuum part is formally trivial. However, the structure of the solution of (1.1), (1.2) is essentially independent of the function $g_m^{(a)}(u)$. In this paper, we briefly report on a new expression for the solution of (1.1), (1.2) motivated by the recently found interplay [4] between factorized difference *L* operators and the *q*-characters for non-twisted quantum affine algebras [5, 6].

In section 2, we propose factorized difference operators L(u) for $U_q(A_{2n}^{(2)})$, $U_q(A_{2n-1}^{(2)})$, $U_q(D_{n+1}^{(2)})$, $U_q(D_4^{(3)})$. L(u) generates functions $\{T^a(u)\}_{a\in\mathbb{Z};u\in\mathbb{C}}$, which are Laurent polynomials in variables $\{Y_a(u)\}_{a\in I_\sigma;u\in\mathbb{C}}$. Moreover $Y_a(u)$ is expressed by a function $Q_a(u)$ which corresponds to the Baxter Q-function. When $Q_a(u)$ is suitably chosen in the context of the analytic Bethe ansatz [1, 7–9], $T^a(u)$ corresponds to an eigenvalue formula of the transfer matrix in the dressed vacuum form (DVF). In particular for $1 \leq a \leq b(U_q(A_{2n}^{(2)}), U_q(A_{2n-1}^{(2)}): b = n; U_q(D_{n+1}^{(2)}): b = n-1; U_q(D_4^{(3)}): b = 2)$, the auxiliary space for this transfer matrix is expected [1] to be a finite-dimensional irreducible module of the quantum affine algebra [10, 11], which is called the Kirillov–Reshetikhin module $W_1^{(a)}(u)$ (see also section 5 in [12]). One of the intriguing properties of L(u) is that L(u) is annihilated by a screening operator $\{S_a\}_{a\in I_\sigma}$, from which $(S_a \cdot T^a)(u) = 0$ results. In the context of the analytic Bethe ansatz, this corresponds to the pole-freeness of $T^a(u)$ under the Bethe ansatz equation. For the non-twisted case $U_q(X_N^{(1)})$, one may identify S_a with the Frenkel–Reshetikhin screening operator [5] if $Q_a(u)$ is suitably chosen.

For the $U_q(A_N^{(2)})$ case, L(u) becomes of the order of N+1. By using a basis of the solutions of the difference equation L(u)w(u) = 0, in section 3, we give a solution (theorem 3.6) of the *T*-system for $U_q(A_N^{(2)})$ (1.1), (1.2) as a ratio of two Casorati determinants whose matrix size is constantly $(N + 1) \times (N + 1)$. On solving this *T*-system, a duality relation (proposition 2.7) plays an important role. There is another expression of the solution to the $U_q(A_N^{(2)})$ *T*-system (1.1), (1.2) which is described by semi-standard tableaux with rectangular shape [1]. This solution follows from a reduction of the Bazhanov and Reshetikhin's Jacobi–Trudi type formula [13] (see (3.4)). In contrast to the Casorati determinants case, the size of the matrix for this determinant is $m \times m$ and thus increases as *m* increases. Lemma 3.3 connects these two types of solutions.

In contrast to the $U_q(A_N^{(2)})$ case, L(u) for $U_q(D_{n+1}^{(2)})$, $U_q(D_4^{(3)})$ contain factors which have a negative exponent -1, thus their order become infinite. Therefore we cannot straightforwardly extend the analysis to get the Casorati determinant type solution for $U_q(A_N^{(2)})$ in this case. However Jacobi–Trudi type formulae are still available in this case as reductions of the solutions in [14, 15]. This situation is parallel to the non-twisted $U_q(D_n^{(1)})$ case [4].

The deformation parameter q is expressed by a parameter \hbar as $q = e^{\hbar}$. The parameter \hbar often appears as a multiple of $\frac{\pi i}{r\hbar}$. However, we note that our argument in this paper is also valid even if one formally sets $\frac{\pi i}{r\hbar} = 0$. In this case, the *T*-system (1.1) is equivalent to the one for the superalgebra $B^{(1)}(0|n)$ [16].

In this paper, we omit most of the calculations and proofs, which are parallel with those in the non-twisted case [4].

2. Difference L operators

Let X_N be a complex simple Lie algebra of rank N, σ a Dynkin diagram automorphism of X_N of order r = 1, 2, 3. The affine Lie algebras of type $X_N^{(r)} = A_n^{(1)}$ $(n \ge 1), B_n^{(1)}$ $(n \ge 2),$

Figure 1. The Dynkin diagrams of X_N for r > 1: The enumeration of the nodes with *I* specified under or on the right side of the nodes. The filled circles denote the fixed points of the Dynkin diagram automorphism σ of order *r*.

 $C_n^{(1)}$ $(n \ge 2)$, $D_n^{(1)}$ $(n \ge 4)$, $E_n^{(1)}$ (n = 6, 7, 8), $F_4^{(1)}$, $G_2^{(1)}$, $A_{2n}^{(2)}$ $(n \ge 1)$, $A_{2n-1}^{(2)}$ $(n \ge 2)$, $D_{n+1}^{(2)}$ $(n \ge 2)$, $E_6^{(2)}$ and $D_4^{(3)}$ are realized as the canonical central extension of the loop algebras based on the pair (X_N, σ) . We write the set of the nodes of the Dynkin diagram of X_N as $I = \{1, 2, \ldots, N\}$, and let $I_{\sigma} = \{1, 2, \ldots, n\}$ be the set of σ -orbits of *I*. In particular, N = nand $I = I_{\sigma}$ for the non-twisted case r = 1. We define numbers $\{r_a\}_{a\in I}$ such that $r_a = r$ if $\sigma(a) = a$, otherwise $r_a = 1$. In our enumeration of the notes of the Dynkin diagram (see figure 1), r_a is 1 except for the case: $r_n = 2$ for $A_{2n-1}^{(2)}$, $r_a = 2$ ($1 \le a \le n - 1$) for $D_{n+1}^{(2)}$, $r_3 = r_4 = 2$ for $E_6^{(2)}$, $r_2 = 3$ for $D_4^{(3)}$. Let $\{\alpha_a\}_{a\in I}$ be the simple roots of X_N with a bilinear form $(\cdot|\cdot)$ normalized as $(\alpha|\alpha) = 2$ for a long root α . Let I_{ab} be an element of the incidence matrix of X_N : $I_{ab} = 2\delta_{ab} - 2(\alpha_a|\alpha_b)/(\alpha_a|\alpha_a)$.

matrix of X_N : $I_{ab} = 2\delta_{ab} - 2(\alpha_a | \alpha_b) / (\alpha_a | \alpha_a)$. Let $U_q(X_N^{(r)})$ be the quantum affine algebra. We introduce functions $\{Q_a(u)\}_{a \in I_a; u \in \mathbb{C}}$ which correspond to the Baxter Q functions for $U_q(X_N^{(r)})$, and define functions $\{Y_a(u)\}_{a \in I_a; u \in \mathbb{C}}$ as

$$Y_a(u) = \frac{Q_a \left(u - \frac{1}{2}(\alpha_a | \alpha_a)\right)}{Q_a \left(u + \frac{1}{2}(\alpha_a | \alpha_a)\right)}.$$
(2.1)

We formally set $Y_0(u) = 1$; $Q_{n+1}(u) = Q_n\left(u + \frac{\pi i}{2\hbar}\right)$ and $Y_{n+1}(u) = Y_n\left(u + \frac{\pi i}{2\hbar}\right)$ for $X_N^{(r)} = A_{2n}^{(2)}$; $Q_{n+1}(u) = 1$ and $Y_{n+1}(u) = 1$ for $X_N^{(r)} \neq A_{2n}^{(2)}$. For the twisted case r > 1, we assume quasiperiodicity $Q_a\left(u + \frac{\pi i}{\hbar}\right) = h_a Q_a(u)$ ($h_a \in \mathbb{C}$), which induces periodicity $Y_a\left(u + \frac{\pi i}{\hbar}\right) = Y_a(u)$. For the non-twisted case r = 1, one can identify $Y_a(u)$ with the Frenkel–Reshetikhin variable Y_{a,q^u} [5] denoted as $Y_a(u)$ in [4] if $Q_a(u)$ is suitably chosen. We shall also use notations $Q_a^k(u) = \prod_{j=0}^{k-1} Q_a\left(u + \frac{\pi i j}{r\hbar}\right)$ and $Y_a^k(u) = \prod_{j=0}^{k-1} Y_a\left(u + \frac{\pi i j}{r\hbar}\right)$. Next we introduce screening operators $\{S_a\}_{a \in I_\sigma}$ on $\mathbb{Z}[Y_a(u)^{\pm 1}]_{a \in I_\sigma; u \in \mathbb{C}}$, whose action is given by

$$(\mathcal{S}_a \cdot Y_b)(u) = \delta_{ab} Y_a(u) \mathcal{S}_a(u).$$
(2.2)

Here we assume $S_a(u)$ satisfies the following relation:

$$S_a(u + (\alpha_a | \alpha_a)) = A_a\left(u + \frac{1}{2}(\alpha_a | \alpha_a)\right)S_a(u)$$
(2.3)

$$A_{a}(u) = \prod_{b=1}^{n'} \frac{Q_{b}^{r_{ab}}(u - (\alpha_{a}|\alpha_{b}))}{Q_{b}^{r_{ab}}(u + (\alpha_{a}|\alpha_{b}))}$$
(2.4)

where $r_{ab} = \max(r_a, r_b)$; n' = n + 1 for $X_N^{(r)} = A_{2n}^{(2)}$ and n' = n for $X_N^{(r)} \neq A_{2n}^{(2)}$. We assume S_a obeys the Leibniz rule. The origin of (2.4) goes back to the Reshetikhin and Wiegmann's Bethe ansatz equation [17] (cf (4.1)). For the non-twisted r = 1 case, (2.4) reduces to the corresponding equation in [4]. We have a formal solution of (2.3) (see also section 5 in [5]):

$$S_{a}(u) = \frac{\prod_{b=1}^{n'} K_{ab}(u)}{Q_{a}^{r_{a}} \left(u - \frac{1}{2}(\alpha_{a}|\alpha_{a})\right) Q_{a}^{r_{a}} \left(u + \frac{1}{2}(\alpha_{a}|\alpha_{a})\right)}$$
(2.5)

where

$$K_{ab}(u) = \begin{cases} 1 & \text{if } I_{ab} = 0\\ Q_b^{r_{ab}}(u) & \text{if } I_{ab} = 1\\ Q_b \left(u - \frac{1}{2}\right) Q_b \left(u + \frac{1}{2}\right) & \text{if } I_{ab} = 2\\ Q_b \left(u - \frac{2}{3}\right) Q_b(u) Q_b \left(u + \frac{2}{3}\right) & \text{if } I_{ab} = 3. \end{cases}$$
(2.6)

Owing to the Leibniz rule, we have

$$\left(S_a \cdot Y_b^k\right)(u) = \delta_{ab} Y_a^k(u) \sum_{j=0}^{k-1} S_a\left(u + \frac{\pi i j}{r\hbar}\right).$$
(2.7)

We shall use the following variables for each algebra; the origin of these variables goes back to the analytic Bethe ansatz calculation of DVF [1, 8, 9].

For the $U_q(A_{2n}^{(2)})$ case:

$$z_{a}(u) = \frac{Y_{a}(u+a)}{Y_{a-1}(u+a+1)} \quad \text{for} \quad 1 \leq a \leq n$$

$$z_{0}(u) = \frac{Y_{n}\left(u+n+1+\frac{\pi i}{2\hbar}\right)}{Y_{n}(u+n+2)} \quad (2.8)$$

$$z_{\bar{a}}(u) = \frac{Y_{a-1}\left(u+2n-a+2+\frac{\pi i}{2\hbar}\right)}{Y_{a}\left(u+2n-a+3+\frac{\pi i}{2\hbar}\right)} \quad \text{for} \quad 1 \leq a \leq n.$$

We also use the variables: $x_a(u) = z_a(u)$ and $x_{2n-a+2}(u) = z_{\bar{a}}(u)$ for $1 \le a \le n$; $x_{n+1}(u) = z_0(u)$.

For the $U_q(A_{2n-1}^{(2)})$ case:

$$z_{a}(u) = \frac{Y_{a}(u+a)}{Y_{a-1}(u+a+1)} \quad \text{for} \quad 1 \leq a \leq n-1$$

$$z_{n}(u) = \frac{Y_{n}^{2}(u+n)}{Y_{n-1}(u+n+1)}$$

$$z_{\bar{n}}(u) = \frac{Y_{n-1}(u+n+1+\frac{\pi i}{2\hbar})}{Y_{n}^{2}(u+n+2)}$$

$$z_{\bar{a}}(u) = \frac{Y_{a-1}(u+2n-a+1+\frac{\pi i}{2\hbar})}{Y_{a}(u+2n-a+2+\frac{\pi i}{2\hbar})} \quad \text{for} \quad 1 \leq a \leq n-1.$$
(2.9)

We also use the variables: $x_a(u) = z_a(u)$ and $x_{2n-a+1}(u) = z_{\bar{a}}(u)$ for $1 \le a \le n$. For the $U_q(D_{n+1}^{(2)})$ case:

$$z_{a}(u) = \frac{Y_{a}^{2}(u+a)}{Y_{a-1}^{2}(u+a+1)} \quad \text{for} \quad 1 \leq a \leq n$$

$$z_{n+1}(u) = \frac{Y_{n}\left(u+n+\frac{\pi i}{2\hbar}\right)}{Y_{n}(u+n+2)} \quad (2.10)$$

$$z_{\overline{n+1}}(u) = \frac{Y_{n}(u+n)}{Y_{n}\left(u+n+2+\frac{\pi i}{2\hbar}\right)} \quad z_{\overline{a}}(u) = \frac{Y_{a-1}^{2}(u+2n-a+1)}{Y_{a}^{2}(u+2n-a+2)} \quad \text{for} \quad 1 \leq a \leq n.$$

For the $U_q(D_4^{(3)})$ case:

$$z_{1}(u) = Y_{1}(u+1)$$

$$z_{2}(u) = \frac{Y_{2}^{3}(u+2)}{Y_{1}(u+3)}$$

$$z_{3}(u) = \frac{Y_{1}^{3}(u+3)}{Y_{1}(u+3)Y_{2}^{3}(u+4)}$$

$$z_{4}(u) = \frac{Y_{1}\left(u+3-\frac{\pi i}{3\hbar}\right)}{Y_{1}\left(u+5+\frac{\pi i}{3\hbar}\right)}$$

$$z_{4}(u) = \frac{Y_{1}\left(u+3+\frac{\pi i}{3\hbar}\right)}{Y_{1}\left(u+5-\frac{\pi i}{3\hbar}\right)}$$

$$z_{3}(u) = \frac{Y_{1}(u+5)Y_{2}^{3}(u+4)}{Y_{1}^{3}(u+5)}$$

$$z_{2}(u) = \frac{Y_{1}(u+5)}{Y_{2}^{3}(u+6)}$$

$$z_{1}(u) = \frac{1}{Y_{1}(u+7)}.$$
(2.11)

Let *D* be a difference operator such that Df(u) = f(u+2)D for any function f(u). We shall use notation: $\overrightarrow{\prod_{k=1}^{m} g_k} = g_1g_2\cdots g_m$ and $\overrightarrow{\prod_{k=1}^{m} g_k} = g_mg_{m-1}\cdots g_1$. By using the variables (2.8)–(2.11), we introduce a factorized difference *L* operator for each algebra.

For the
$$U_q(A_{2n}^{(2)})$$
 case:

$$L(u) = \prod_{a=1}^{n} (1 - z_{\bar{a}}(u)D)(1 - z_{0}(u)D) \prod_{a=1}^{n} (1 - z_{a}(u)D)$$

$$= \prod_{a=1}^{2n+1} (1 - x_{a}(u)D).$$
(2.12)

For the $U_q(A_{2n-1}^{(2)})$ case:

$$L(u) = \prod_{a=1}^{n} (1 - z_{\bar{a}}(u)D) \prod_{a=1}^{n} (1 - z_{a}(u)D) = \prod_{a=1}^{n} (1 - x_{a}(u)D).$$
(2.13)

For the $U_q(D_{n+1}^{(2)})$ case:

$$L(u) = \prod_{a=1}^{n+1} (1 - z_{\bar{a}}(u)D) \left(1 - z_{n+1}(u)z_{\overline{n+1}}(u+2)D^2\right)^{-1} \prod_{a=1}^{n+1} (1 - z_a(u)D).$$
(2.14)

For the $U_q(D_4^{(3)})$ case:

$$L(u) = \prod_{a=1}^{4} (1 - z_{\bar{a}}(u)D) \left(1 - z_{4}(u)z_{\bar{4}}(u+2)D^{2}\right)^{-1} \prod_{a=1}^{4} (1 - z_{a}(u)D). \quad (2.15)$$

In general, L(u) (2.12)–(2.15) are power series of D whose coefficients lie in $\mathbb{Z}[Y_a(u)^{\pm 1}]_{a \in I_a; u \in \mathbb{C}}$. We assume S_a acts on these coefficients linearly.

Proposition 2.1. For $a \in I_{\sigma}$, we have $(S_a \cdot L)(u) = 0$.

The proof is similar to the non-twisted case [4]. So we just mention the lemmas which are necessary to the $U_q(D_4^{(3)})$ case.

Lemma 2.2. For the $U_q(D_4^{(3)})$ case, let

$$H_{1}(u) = Y_{1}(u) + \frac{Y_{2}^{3}(u+1)}{Y_{1}(u+2)} \qquad H_{2}(u) = Y_{2}^{3}(u) + \frac{Y_{1}^{3}(u+1)}{Y_{2}^{3}(u+2)}$$
$$K_{1}(u) = \frac{1}{Y_{1}(u)} + \frac{Y_{1}(u-2)}{Y_{2}^{3}(u-1)} \qquad K_{2}(u) = \frac{1}{Y_{2}^{3}(u)} + \frac{Y_{2}^{3}(u-2)}{Y_{1}^{3}(u-1)}$$

then $(S_a \cdot H_a)(u) = (S_a \cdot K_a)(u) = 0$ for a = 1, 2.

Lemma 2.3. For the $U_q(D_4^{(3)})$ case, one can rewrite L(u) (2.15) as follows:

$$L(u) = \left(1 - K_1(u+7)D + \frac{1}{Y_2^3(u+8)}D^2\right) \left(1 - \sum_{j=0}^{\infty} A_j(u)D^{2j+1} + \sum_{j=0}^{\infty} B_j(u)D^{2j+2}\right)$$
$$\times \left(1 - H_1(u+1)D + Y_2^3(u+2)D^2\right)$$

where

$$\begin{aligned} A_{j}(u) &= K_{1} \left(u + 4j + 5 + \frac{\pi i}{3\hbar} \right) H_{1} \left(u + 3 - \frac{\pi i}{3\hbar} \right) \\ &+ (1 - \delta_{j0}) K_{1} \left(u + 4j + 5 - \frac{\pi i}{3\hbar} \right) H_{1} \left(u + 3 + \frac{\pi i}{3\hbar} \right) \\ B_{j}(u) &= K_{1} \left(u + 4j + 7 + \frac{\pi i}{3\hbar} \right) H_{1} \left(u + 3 + \frac{\pi i}{3\hbar} \right) \\ &+ K_{1} \left(u + 4j + 7 - \frac{\pi i}{3\hbar} \right) H_{1} \left(u + 3 - \frac{\pi i}{3\hbar} \right) - \delta_{j0} \frac{Y_{2}^{3}(u + 4)}{Y_{2}^{3}(u + 6)}. \end{aligned}$$

Lemma 2.4. For the $U_q(D_4^{(3)})$ case, one can expand the Y_2 dependent part in L(u) (2.15):

$$(1 - z_{\overline{2}}(u)D)(1 - z_{\overline{3}}(u)D) = 1 - Y_{1}(u+5)K_{2}(u+6)D + \frac{Y_{1}(u+5)Y_{1}(u+7)}{Y_{1}^{3}(u+7)}D^{2}$$
$$(1 - z_{3}(u)D)(1 - z_{2}(u)D) = 1 - \frac{H_{2}(u+2)}{Y_{1}(u+3)}D + \frac{Y_{1}^{3}(u+3)}{Y_{1}(u+3)Y_{1}(u+5)}D^{2}.$$

We shall expand L(u) as

$$L(u) = \sum_{a=0}^{\infty} (-1)^a T^a (u+a) D^a.$$
 (2.16)

In particular, we have $T^0(u) = 1$ and $T^a(u) = 0$ for $a \in \mathbb{Z}_{<0}$. For the $U_q(A_N^{(2)})$ case, (2.16) becomes a polynomial in D of order N + 1 and $T^a(u) = 0$ for $a \in \mathbb{Z}_{\ge N+2}$.

Remark 2.5. There is a homomorphism β analogous to that in [5]:

$$\beta: \mathbb{Z}\left[Y_a(u)^{\pm 1}\right]_{a \in I_{\sigma}; u \in \mathbb{C}} \to \mathbb{Z}\left[e^{\pm \frac{1}{r_a}\Lambda_a}\right]_{a \in I_{\sigma}} \qquad \beta\left(Y_a(u)^{\pm 1}\right) = e^{\pm \frac{1}{r_a}\Lambda_a}$$

where $\{\Lambda_a\}_{a \in I_a}$ are the fundamental weights of a rank *n* subalgebra \mathring{g} of $X_N^{(r)}$: $(X_N^{(r)}, \mathring{g}) = (X_n^{(1)}, X_n), (A_{2n}^{(2)}, C_n), (A_{2n-1}^{(2)}, C_n), (D_{n+1}^{(2)}, B_n), (D_4^{(3)}, G_2), (E_6^{(2)}, F_4).$ Note that the image of β is independent of the parameter \hbar . In particular, $\beta(T^a(u)) \in \mathbb{Z}[e^{\pm\Lambda_b}]_{b \in I_a}$ is a linear combination of \mathring{g} characters (cf section 6 in [18]). For $1 \leq a \leq b$ $(U_q(A_{2n}^{(2)}), U_q(A_{2n-1}^{(2)}): b = n; U_q(D_{n+1}^{(2)}): b = n - 1; U_q(D_4^{(3)}): b = 2), T^a(u)$ contains a term $Y_a^{r_a}(u) = \prod_{k=1}^a z_k(u + a - 2k): \beta(Y_a^{r_a}(u)) = e^{\lambda_a}$. In the context of the analytic Bethe ansatz [9] (resp. the theory of *q*-characters [5]), $Y_a^{r_a}(u)$ corresponds to the top term of DVF (resp. the highest weight monomial of the *q*-character) for the Kirillov–Reshetikhin module $W_1^{(a)}(u)$ over $U_q(X_N^{(r)})$.

From proposition 2.1, we obtain:

Corollary 2.6. For $a \in I_{\sigma}$ and $b \in \mathbb{Z}$, we have $(S_a \cdot T^b)(u) = 0$.

For the $U_q(A_N^{(2)})$ case, there is a duality among $\{T^a(u)\}_{a\in\mathbb{Z};u\in\mathbb{C}}$.

Proposition 2.7. For the $U_q(A_N^{(2)})$ case, we have

$$T^{a}(u) = T^{N+1-a}\left(u + \frac{\pi i}{2\hbar}\right) \qquad a \in \mathbb{Z}.$$

This relation is given in [1] as 'modulo σ relation'. The proof of this proposition is similar to the $B^{(1)}(0|n)$ case [16], which corresponds to N = 2n and $\frac{\pi i}{\hbar} \to 0$.

One can show

$$L(u)Q_1^{r_1}(u) = 0. (2.17)$$

A T-Q relation follows from (2.17):

$$\sum_{a=0}^{\infty} (-1)^a T^a(u+a) Q_1^{r_1}(u+2a) = 0.$$
(2.18)

We shall expand $L(u)^{-1}$ as

$$L(u)^{-1} = \sum_{m=0}^{\infty} T_m(u+m)D^m.$$
(2.19)

In particular, we have $T_0(u) = 1$ and $T_m(u) = 0$ for $m \in \mathbb{Z}_{<0}$. From the relation $L(u)L(u)^{-1} = 1$, we obtain a *T*-*T* relation

$$\sum_{a=0}^{m} (-1)^{a} T_{m-a}(u+m+a) T^{a}(u+a) = \delta_{m0}.$$
(2.20)

From the relation $L(u)^{-1}L(u) = 1$, we also have

$$\sum_{n=0}^{\infty} (-1)^{a} T_{m-a}(u-m-a) T^{a}(u-a) = \delta_{m0}.$$
(2.21)

In particular for the $U_q(A_N^{(2)})$ case, the *T*-*Q* relation (2.18) reduces to

$$\sum_{a=0}^{N+1} (-1)^a T^a(u+a) Q_1(u+2a) = 0.$$
(2.22)

From the proposition 2.7, one can rewrite this as follows:

$$\sum_{a=0}^{N+1} (-1)^a T^a (u-a) Q_1 \left(u - 2a + g + \frac{\pi i}{2\hbar} \right) = 0$$
(2.23)

where g = N + 1 is the dual Coxeter number of $A_N^{(2)}$. If one assumes $\lim_{m\to\infty} T_m(u+m)$ (resp. $\lim_{m\to\infty} T_m(u-m)$) is proportional to $Q_1(u)$ (resp. $Q_1(u+g+\frac{\pi i}{2\hbar})$), then one can recover the *T*-*Q* relation (2.22) (resp. (2.23)) from the *T*-*T* relation (2.20) (resp. (2.21)).

3. Solution of the *T*-system

The goal of this section is to give a Casorati determinant solution to the $U_q(A_N^{(2)})$ T-system (1.1), (1.2). Consider the following difference equation:

$$L(u)w(u) = 0 \tag{3.1}$$

where L(u) is the difference L operator (2.12) and (2.13) for $U_q(A_N^{(2)})$. By using a basis $\{w_1(u), w_2(u), \dots, w_{N+1}(u)\}$ of the solutions of (3.1), we define a Casorati determinant:

$$[i_{1}, i_{2}, \dots, i_{N+1}] = \begin{vmatrix} w_{1}(u+2i_{1}) & w_{1}(u+2i_{2}) & \cdots & w_{1}(u+2i_{N+1}) \\ w_{2}(u+2i_{1}) & w_{2}(u+2i_{2}) & \cdots & w_{2}(u+2i_{N+1}) \\ \vdots & \vdots & \ddots & \vdots \\ w_{N+1}(u+2i_{1}) & w_{N+1}(u+2i_{2}) & \cdots & w_{N+1}(u+2i_{N+1}) \end{vmatrix}$$

Setting $w = w_1, w_2, ..., w_{N+1}$ in (3.1) and noting the relation $T^{N+1}(u) = 1$, we obtain the following relation:

$$[0, 1, \dots, N] = [1, 2, \dots, N+1]. \tag{3.2}$$

Owing to Cramer's formula, we also have:

Proposition 3.1. For
$$a \in \{0, 1, ..., N + 1\}$$
, we have

$$T^{a}(u + a) = \frac{[0, 1, ..., a - 1, a + 1, ..., N + 1]}{[0, 1, ..., N]}.$$

Lemma 3.2. For the $U_q(A_N^{(2)})$ case, one can rewrite L(u) (2.12), (2.13) as

$$L(u) = \prod_{a=1}^{\overrightarrow{N+1}} \left(x_a \left(u + N + 1 - 2a + \frac{\pi i}{2\hbar} \right) - D \right).$$

Difference L operators

Let $\xi_m^{(a)}(u) = [0, 1, ..., a - 1, a + m, a + m + 1, ..., N + m]$ and $\xi(u) = \xi_0^{(1)}(u) = [0, 1, ..., N]$. Note that $\xi_m^{(0)}(u) = \xi(u)$ follows from (3.2). For $1 \le a \le N + 1$, we introduce a difference operator

$$L_{a}(u) = \prod_{b=N+2-a}^{N+1} \left(D - x_{b} \left(u + N + 1 - 2b + \frac{\pi i}{2\hbar} \right) \right).$$
(3.3)

In particular we have $L_{N+1}(u) = (-1)^{N+1}L(u)$. We choose a basis of the solutions of (3.1) so that it satisfies $L_a(u)w_b(u) = 0$ for $1 \le b \le a \le N + 1$: $w_a \in \text{Ker}L_a$. For this basis, the following lemma holds.

Lemma 3.3. Let $\{i_k\}$ be integers such that $0 = i_0 < i_1 < \cdots < i_N$, $\mu = (\mu_k)$ the Young diagram whose kth row is $\mu_k = i_{N+1-k} + k - N - 1$, and $\mu' = (\mu'_k)$ the transposition of μ . We assign coordinates $(j, k) \in \mathbb{Z}^2$ on the skew-Young diagram $(\mu_1^{N+1})/\mu$ such that the row index j increases as we go upwards and the column index k increases as we go from left to right and that (1, 1) is on the bottom left corner of $(\mu_1^{N+1})/\mu$:

$$\frac{[i_0, i_1, \dots, i_N]}{[0, 1, \dots, N]} = \sum_b \prod_{(j,k) \in (\mu_1^{N+1})/\mu} x_{b(j,k)} (u+2j+2k-4)$$
$$= \det_{1 \le j,k \le \mu_1} \left(T^{\mu'_j - j + k} \left(u + N - 1 + j + k - \mu'_j + \frac{\pi i}{2\hbar} \right) \right)$$

where the summation is taken over the semi-standard tableau b on the skew-Young diagram $(\mu_1^{N+1})/\mu$ as the set of elements $b(j,k) \in \{1, 2, ..., N+1\}$ labelled by the coordinates (j,k) mentioned above.

The proof is similar to the $U_q(C_n^{(1)})$ case [4], where we use a theorem in [19] and proposition 2.7. Note that lemma 3.3 reduces to proposition 3.1 if we set $i_b = b$ for $0 \le b \le a - 1$ and $i_b = b + 1$ for $a \le b \le N$. From proposition 2.7 and lemma 3.3, one can show:

Lemma 3.4. For $a \in \{0, 1, ..., N + 1\}$, we have

$$\frac{\xi_m^{(a)}(u)}{\xi(u)} = \frac{\xi_m^{(N-a+1)} \left(u + 2a - N - 1 + \frac{\pi i}{2\hbar} \right)}{\xi \left(u + 2a - N - 1 + \frac{\pi i}{2\hbar} \right)}.$$

The following relation is a kind of Hirota–Miwa equation [2, 3], which is a Plücker relation and used in a similar context [4, 20–22].

Lemma 3.5. $\xi_m^{(a)}(u)\xi_m^{(a)}(u+2) = \xi_{m-1}^{(a)}(u)\xi_{m+1}^{(a)}(u+2) + \xi_m^{(a-1)}(u)\xi_m^{(a+1)}(u+2).$

From lemmas 3.4 and 3.5, we finally obtain:

Theorem 3.6. For $a \in I_{\sigma}$ and $m \in \mathbb{Z}_{\geq 1}$,

$$\Gamma_m^{(a)}(u) = \frac{\xi_m^{(a)}(u-a-m+1)}{\xi(u-a-m+1)}$$

satisfies the T-system for $U_q(A_N^{(2)})$ (1.1), (1.2).

There is another expression of the solution to the $U_q(A_N^{(2)})$ T-system (1.1), (1.2), which follows from a reduction of Bazhanov and Reshetikhin's Jacobi–Trudi type formula [13] (cf section 5 in [1])

$$T_m^{(a)}(u) = \det_{1 \le j,k \le m} (\mathcal{T}^{a-j+k}(u+j+k-m-1))$$
(3.4)

where $\mathcal{T}^{a}(u)$ obeys the following condition:

$$\mathcal{T}^{a}(u) = \begin{cases} 0 & \text{if } a < 0 \text{ or } a > N+1 \\ 1 & \text{if } a = 0 \text{ or } a = N+1 \\ T_{1}^{(a)}(u) & \text{if } 1 \leqslant a \leqslant n \\ T_{1}^{(N-a+1)}\left(u + \frac{\pi i}{2h}\right) & \text{if } n+1 \leqslant a \leqslant N. \end{cases}$$
(3.5)

Through the identification $T^a(u) = T^a(u)$ and lemma 3.3, (3.4) reproduces the solution in theorem 3.6, and also the tableaux sum expression in [1].

4. Discussion

In this paper, we have dealt with the *T*-system without the vacuum part. On applying our results to realistic problems in solvable lattice models or integrable field theories, we must specify the Baxter *Q*-function, and recover the vacuum part whose shape depends on each model. We can easily recover the vacuum part multiplying the vacuum function $\psi_a(u)$ by the function $z_a(u)$ so that $\psi_a(u)$ is compatible with the Bethe ansatz equation of the form (cf [17, 23])

$$\Psi_{a}\left(u_{j}^{(a)}\right) = \prod_{b=1}^{n'} \frac{Q_{b}^{r_{ab}}\left(u_{j}^{(a)} + (\alpha_{a}|\alpha_{b})\right)}{Q_{b}^{r_{ab}}\left(u_{j}^{(a)} - (\alpha_{a}|\alpha_{b})\right)} \qquad a \in I_{\sigma}.$$
(4.1)

In the case of the solvable vertex model, it was conjectured [23] that $\Psi_a(u)$ is given as a ratio of Drinfeld polynomials.

A remarkable connection between DVF and the *q*-character was pointed out in [5]. It was also conjectured [4] that *q*-characters of Kirillov–Reshetikhin modules over $U_q(X_n^{(1)})$ satisfy the *T*-system [24]. It is natural to expect that similar phenomena are also observed for the twisted case $U_q(X_N^{(r)})$ (r > 1). Thus one may look upon $T_m^{(a)}(u)$ in theorem 3.6 (or $T^a(u)$) as a kind of *q*-character. Precisely speaking, in view of a correspondence [25] between DVF and generators of the deformed *W*-algebra, one may need to slightly modify $T_m^{(a)}(u)$ (or $T^a(u)$) (in particular, the factor $\frac{\pi i}{\hbar}$) to identify $T_m^{(a)}(u)$ (or $T^a(u)$) with the *q*-character of the Kirillov–Reshetikhin module over $U_q(X_N^{(r)})$ (r > 1).

We can also easily construct difference *L* operators associated with superalgebras by using the results on the analytic Bethe ansatz [16, 26–28]. However, their orders are infinite as $U_q(B_n^{(1)}), U_q(D_n^{(1)}), U_q(D_{n+1}^{(2)}), U_q(D_4^{(3)})$ cases. Thus we will need some new ideas to construct Casorati determinant-like solutions to the *T*-system for superalgebras.

Acknowledgments

The author would like to thank Professor A Kuniba for explaining the results on [4]. He is financially supported by Inoue Foundation for Science.

References

- [1] Kuniba A and Suzuki J 1995 J. Phys. A: Math. Gen. 28 711
- [2] Hirota R 1981 J. Phys. Soc. Japan 50 3785
- [3] Miwa T 1982 Proc. Japan. Acad. 58 9
- [4] Kuniba A, Okado M, Suzuki J and Yamada Y 2002 J. Phys. A: Math. Gen. 35 1415 (Preprint math.QA/0109140)
- [5] Frenkel E and Reshetikhin N 1999 Contemp. Math. 248 163
- [6] Frenkel E and Mukhin E 2001 Commun. Math. Phys. 216 23

- [7] Reshetikhin N Yu 1983 Sov. Phys.-JETP 57 691
- [8] Reshetikhin N Yu 1987 Lett. Math. Phys. 14 235
- [9] Kuniba A and Suzuki J 1995 Commun. Math. Phys. 173 225
- [10] Chari V and Pressley A 1995 Can. Math. Soc. Conf. Proc. 16 59
- [11] Chari V and Pressley A 1998 Commun. Math. Phys. 196 461
- [12] Kuniba A, Nakanishi T and Tsuboi Z 2001 Preprint math.QA/0105145 (2002 Commun. Math. Phys. at press)
- [13] Bazhanov V and Reshetikhin N 1990 J. Phys. A: Math. Gen. 23 1477
- [14] Kuniba A, Nakamura S and Hirota R 1996 J. Phys. A: Math. Gen. 29 1759
- [15] Tsuboi Z and Kuniba A 1996 J. Phys. A: Math. Gen. 29 7785
- [16] Tsuboi Z 1999 J. Phys. A: Math. Gen. 32 7175
- [17] Reshetikhin N Yu and Wiegmann P 1987 Phys. Lett. B 189 125
- [18] Hatayama G, Kuniba A, Okado M, Takagi T and Tsuboi Z 2001 Preprint math.QA/0102113 (2002 Progress in Mathematical Physics (Boston, MA: Birkhäuser) at press)
- [19] Nakagawa J, Noumi M, Shirakawa M and Yamada Y 2000 Physics and Combinatorics, Proc. Nagoya 2000 Int. Workshop ed A N Kirillov and N Liskova (Singapore: World Scientific) p 180
- [20] Krichever I, Lipan O, Wiegmann P and Zabrodin A 1997 Commun. Math. Phys. 188 267
- [21] Suzuki J 2001 *RIMS Kokyuroku* **1221** 21 (nlin.SI/0009006)
- [22] Dorey P, Dunning C and Tateo R 2000 J. Phys. A: Math. Gen. 33 8427
- [23] Kuniba A, Ohta Y and Suzuki J 1995 J. Phys. A: Math. Gen. 28 6211
- [24] Kuniba A, Nakanishi T and Suzuki J 1994 Int. J. Mod. Phys. A 9 5215
- [25] Frenkel E and Reshetikhin N 1998 Commun. Math. Phys. 197 1
- [26] Tsuboi Z 1997 J. Phys. A: Math. Gen. 30 7875
- [27] Tsuboi Z 1998 Physica A 252 565
- [28] Tsuboi Z 1999 Physica A 267 173